Кривошипно шатунный механизм своими рука

Кривошипно-шатунный механизм (КШМ). Маятник Капицы

Данная статья является вводной теорией к занятию по робототехнике «Кривошипно-шатунный механизм из Lego EV3″

Первые КШМ

Первые упоминания об использовании кривошипно-шатунного механизма можно отнести ко временам Древнего Рима (примерно III век н.э.). Машина для распиливания каменных блоков передавала вращение от водяного колеса с помощью зубчатой передачи на кривошипно-шатунный механизм, который преобразовывал вращательное движение в возвратно-поступательное движение полотна пилы. Также такие устройства могли использоваться на древних лесопилках.

Схема водяного древнеримского распиловочного станка с КШМ

Большого распространения такие машины не получили – деревянные части из-за большого количества трущихся деталей быстро изнашивались и требовали частого ремонта, а рабский труд был намного дешевле и не требовал большой квалификации рабочих.

В XVI веке кривошипно-шатунный механизм появился на деревянных самопрялках. Самопрялка – это ручной станок для прядения нити из шерсти, состоящий из двух катушек. В самопрялке для скручивания нити использовался принцип ременной передачи. Раньше большую катушку приходилось раскручивать рукой. К самопрялке добавили педаль. Нажимая ногой на педаль, работник смог раскручивать катушку без использования рук. Этот механизм упростил работу и позволил за то же время производить больше пряжи. В данном устройстве возвратно-поступательное движение педали передавалось через деревянный шатун на кривошип и преобразовывалось во вращательное движение большой катушки (шкива).

Самопрялка с педалью и КШМ позволяла освободить руки и сделать работу более производительной

КШМ в паровых машинах

Начиная с начала XVIII века большую популярность среди изобретателей и ученых начинают получать паровые машины. Первый паровой двигатель для водяного насоса построил в 1705 году английский изобретатель Томас Ньюкомен для выкачивания воды из глубоких шахт.

Позднее устройство парового двигателя было усовершенствовано шотландским инженером и механиком Джеймсом Уаттом (1736-1819). Кстати, именно Джеймс Уатт ввел в оборот термин «лошадиная сила», а его именем назвали единицу мощности Ватт. Паровая машина Уатта получила сложную систему связанных тяг, а планетарная зубчатая передача преобразовывала возвратно-поступательное движение поршня во вращательное движение маховика (большого тяжелого колеса). Данная паровая машина стала универсальной, так как в отличие от машины Ньюкомена поршень имел рабочий ход в обе стороны. Машина Уатта получила широкое распространение на ткацких фабриках, в металлургии, при строительстве первых паровозов для железных дорог XVIII века.

Нужно сказать, что паровыми машинами занимались в те времена очень многие изобретатели. Так, в Российской Империи свою двухцилиндровую паровую машину изобрел инженер Иван Иванович Ползунов (1728-1766).

В XIX веке паровую машину Уатта упростили, заменив сложный планетарный механизм на кривошипно-шатунный механизм.

Паровая машина с кривошипно-шатунным механизмом Схема паровой машины с кривошипно-шатунным механизмом

Паровая машина с КШМ нашла широкое применение при строительстве первых автомобилей на паровой тяге и паровозов, перевозящих грузы по железной дороге.

КШМ в двигателях внутреннего сгорания

До этого мы рассматривали использование кривошипно-шатунного механизма в паровых двигателях. В паровом двигателе топливо сгорает в печи (вне цилиндра) и нагревает водяной котел, и уже водяной пар в цилиндре толкает поршень.

В двигателе внутреннего сгорания топливная смесь (воздух + газ, или воздух + бензин и т.д.) поджигается внутри цилиндра и продукты горения толкают поршень. Сокращенно такие двигатели называют ДВС.

Первый одноцилиндровый ДВС на газовом топливе построил в 1860 году в Париже французский изобретатель Жан Ленуар.

Двигатель внутреннего сгорания Жана Ленуара (внешне очень похож на паровую машину)

Однако широкое применение двигатели внутреннего сгорания нашли в конце XIX века после получения керосина и бензина из нефти. Появление жидкого топлива позволило создать экономичные двигатели небольшой массы, которые можно было использовать для привода транспортных машин.

В 1881-1885 гг. российский изобретатель Огнеслав Костович сконструировал и построил в России восьмицилиндровый двигатель мощностью 59 кВт.

Двигатель внутреннего сгорания Огнеслава Костовича

В 1897 г. немецким инженером Рудольфом Дизелем был спроектирован и построен первый двигатель с воспламенением от сжатия. Это был компрессорный двигатель, работающий на керосине, впрыскиваемом в цилиндр при помощи сжатого воздуха.

Рудольф Дизель и его двигатель внутреннего сгорания

Все эти ДВС имели схожие черты и использовали кривошипно-шатунный механизм для преобразования возвратно-поступательного движения поршня во вращательное движение коленвала.

Давайте посмотрим на схему устройства современного двигателя внутреннего сгорания.

Поршень совершает возвратно-поступательное движение вдоль цилиндра – он ходит вверх и вниз.

Шатун – деталь, связывающая кривошип и поршень.

Кривошип – условная деталь, которая связывает шатун с коленвалом.

Противовес снижает вибрации при вращении коленвала.

Блок цилиндров – корпус, в котором находятся цилиндры двигателя.

Поршневой палец – цилиндрическая деталь, ось вращения шатуна относительно поршня.

Коленвал (коленчатый вал) – ось вращения ступенчатой формы.

Верхняя мертвая точка – крайнее верхнее положение поршня, где меняется направление его движения.

Нижняя мертвая точка — крайнее нижнее положение поршня, где меняется направление его движения.

Ход поршня — расстояние между крайними положениями поршня. Равно удвоенному радиусу кривошипа.

Видео:

Литература:

Маятник Капицы

Обычный маятник, если перевернуть его кверху ногами, неустойчив. Для него крайне трудно найти верхнюю точку равновесия. Но если совершать быстрые вертикальные возвратно-поступательные колебания, то положение такого маятника становится устойчивым.

Петр Леонидович Капица

Советский академик и нобелевский лауреат по физике Петр Леонидович Капица (1894 — 1984) использовал модель маятника с вибрирующим подвесом для построения новой теории, которая описывала эффекты стабилизации тел или частиц. Работа Капицы по стабилизации маятника была опубликована в 1951 году, а сама модель получила название «маятник Капицы». Более того, было открыто новое направление в физике — вибрационная механика. Данная модель позволила наглядно показать возможности высокочастотной электромагнитной стабилизации пучка заряженных частиц в ускорителях.

Владимир Игоревич Арнольд

Другой советский математик и академик Владимир Игоревич Арнольд (1937-2010), который был заместителем Капицы, вспоминал его слова:

«Он (Капица — примечание) сказал: «Вот смотрите — когда придумывается какая-то физическая теория, то прежде всего надо сделать маленький какой-нибудь прибор, на котором его наглядно можно было-бы продемонстрировать кому угодно. Например, Будкер и Векслер хотят делать ускорители на очень сложной системе. Но я посмотрел, что уравнения, которые говорят об устойчивости этого пучка, означают, что если маятник перевернут кверху ногами, он обычно неустойчив, падает. Но если точка подвеса совершает быстрые вертикальные колебания, то он становится устойчивым. В то время как ускоритель стоит много миллионов, а этот маятник можно очень легко сделать. Я его сделал на базе швейной электрической машинки, он вот здесь стоит». Он нас отвел в соседнюю комнату и показал этот стоящий вертикально маятник на базе швейной машинки».

У математика Арнольда не было своей швейной машинки, и он огорчился. Но у него была электробритва «Нева», из которой и был собран перевернутый маятник. К сожалению, в первой конструкции маятник падал. Тогда Арнольд вывел формулу и увидел, что длина маятника не должна быть больше 12 сантиметров. Известный математик укоротил подвес до 11 сантиметров и все получилось.

Давайте посмотрим, какие силы действуют на «маятник Капицы». После прохождения верхней мертвой точки подвес маятника начинает тянуть грузик вниз. После прохождения нижней мертвой точки подвес толкает грузик вверх. Так как углы вежду векторами сил в верхней и нижней точке разные, то сумма их векторов дает силу, направленную к оси вертикальных колебаний маятника. Если эта сила больше силы тяжести, то верхнее положение маятника становится устойчивым.

А эта формула описывает взаимосвязь частоты вибраций подвеса, амплитуды колебаний и длины жесткого подвеса.

Источник

Макет кривошипно-шатунного механизма

Казалось бы, скучное учебно-наглядное пособие. Все когда-то видели похожее на уроке физики.

Читайте также:  Ортопедические сапожки своими руками

Нет. В ближайшие лет тридцать кривошипно-шатунный механизм если не вымрет, то попадёт в Красную книгу, или как там называется её аналог у технарей. Да, сказанное кажется невероятным, ведь процесс только начался, но он уже вовсю идёт. И это — не только моноколёса и электробусы, к которым мы привыкли на удивление быстро. Но теперь мало кого удивляют аккумуляторные садовые триммеры, которых ещё недавно не существовало. Вообще.

Так что предлагаемая самоделка автора Instructables под ником TheNick123456789 — не только учебное-наглядное пособие или кинетическая скульптура, но и прижизненный памятник кривошипно-шатунному механизму. Пока ещё прижизненный.

(На самом деле нет. Даже когда человечество по максимуму заменит технику с ДВС аккумуляторными аналогами, кривошипно-шатунные механизмы останутся в многочисленных компрессорах и электролобзиках. В холодильнике у вас на кухне он тоже есть).

Есть стереотип, что как только человек приобретает 3D-принтер, он разучивается изготавливать детали самоделок без него. Конечно же, так случается далеко не всегда. Мастер доказывает это, выполнив две детали конструкции из дерева. Принтер работает медленно, как раз в это время TheNick123456789 их и изготавливает. Одна из деталей представляет собой основание, а во второй, перпендикулярной первой, просверлено отверстие для коленвала. И то и другое сделано из доски прямоугольного сечения 50х100 мм. Даже когда они были готовы, печать продолжалась, в общей сложности она заняла 30 часов. Но вот всё готово:

Выемка в цилиндре не только придаёт устройству дополнительную наглядность, но и облегчает сборку. Мастер соединяет цилиндр с основанием при помощи шуруповёрта (и снова пример устройства с электродвигателем, питаемым от аккумуляторов, к которому мы так привыкли, что даже об этом не задумываемся).

Добавляет вторую деревянную деталь с отверстием для коленвала, перпендикулярную первой:

Соединяет между собой коленвал, шатун, поршневой палец и поршень. После чего собирает конструкцию:

Предлагаемый макет, помимо прочего, показывает, что классическое дерево и высокотехнологичная пластмасса — не антагонисты. Если правильно выбрать, какие детали из чего изготавливать, они будут отлично сочетаться в одной конструкции.

Источник

Кривошипно шатунный механизм своими руками

С детства нам знакома технология выпиливания лобзиком. Принцип простой – неподвижная деталь размещается на подставке с технологическим вырезом, распил производится за счет перемещения пилки. Качество работ зависит от твердости рук и умения работника.

В этой статье мы расскажем как сделать лобзиковый станок самостоятельно. Для тех же, кто не хочет заморачиваться и готов купить заводской инструмент, будет полезна статья-обзор Виктора Тагаева — 11 популярных лобзиковых станков

Таким способом можно буквально вырезать кружева из тонких деревянных или пластиковых заготовок. Однако процесс трудоемкий и медленный. Поэтому многие мастера задумывались о малой механизации.

Простая конструкция из прошлого века

Еще в журнале «Юный техник» предлагались чертежи, как сделать лобзиковый станок своими руками. Причем конструкция не предполагает электропривода, привод работает от мускульной силы, как у точильщиков ножей.

Станок состоит из основных частей:

  • станина (А)
  • рабочий стол (Б) с прорезью для полотна
  • система рычагов (В) для удержания пильного полотна
  • маховик (Г), который является первичным шкивом привода
  • кривошипно-шатунный механизм (Д), совмещенный с вторичным шкивом привода, и приводящий в движение рычаги (В)
  • педальный узел (Е) с кривошипно-шатунным механизмом, приводящий в движение маховик (Г)
  • натяжитель пильного полотна (Ж)

Ступней ноги мастер приводит в движение маховик (Г). С помощью ременной передачи вращается кривошипно-шатунный механизм (Д), соединенный с нижним рычагом (В). Между рычагами натянута пилка, степень натяжения регулируется талрепом (Ж).

При хорошо сбалансированном маховике, обеспечивается достаточная плавность хода пильного полотна, и подобный самодельный лобзиковый станок позволяет массово выпиливать однотипные заготовки, экономя время и усилия. В те времена пилки для лобзикового станка выпускались в виде плоской ленты однонаправленного действия.

Поэтому для получения узоров сложной формы приходилось вращать заготовку вокруг полотна. Размеры заготовки ограничены длиной рычагов (В).

От механического лобзика до электрического один шаг

Ножной привод не может дать настоящей свободы действий и равномерности хода пилки. Разумнее приспособить для кривошипно-шатунного механизма электродвигатель. Однако, если вы используете настольный лобзиковый станок время от времени, нет смысла изготавливать стационарную конструкцию с собственным мотором.

Можно воспользоваться домашним электроинструментом. Например – шуруповертом с регулятором скорости вращения.
Используются материалы, буквально из деревянных обрезков и старого хлама. Единственная ответственная деталь – станина. Ее лучше изготовить из прочной фанеры толщиной не менее 18 мм.

Все соединения делаем на шурупах по дереву, места стыков можно промазать клеем ПВА. Из того же материала собираем опорный постамент для штанги рычагов. Конструкция опоры не должна иметь люфтов, от ее прочности зависит последующая точность работы всего станка.

Рычажная конструкция собирается из деревянных заготовок. Разумеется, обычные сосновые бруски тут не подойдут. Надо использовать дуб или бук. Пусть вас не пугает стоимость такого материала – для рычагов прекрасно используются ножки от старого стула. Вырезаем наиболее прямые участки – и прочный рычажный механизм готов.

На концах рычагов делаем продольные пропилы, в которые устанавливаем крепления пилки для лобзиковых станков. Само крепление представляет собой металлическую пластину толщиной 2-3 мм с отверстиями. Верхнее отверстие для закрепления в рычаге, нижнее служит для зажима пильного полотна. Для удобства используем барашковые гайки.

В нижнем рычаге аналогичная конструкция в зеркальном исполнении.

Устанавливаем рычажную систему в станину. Задние части рычагов соединяем винтовой стяжкой (талрепом). С ее помощью регулируется натяжение пильного полотна.

Для удобства можно установить поддерживающую пружину. Кроме основной функции, она послужит буфером, смягчающим рывки при возвратно-поступательном движении механизма.

Кривошипно-шатунный механизм изготавливается из фанеры толщиной 10-12 мм. Для закрепления оси вращения используем закладные подшипники, которые усаживаются в подготовленные отверстия в стойках.

Стойки соединяются между собой, образуя прочную опору для маховика. В качестве оси используется обычный болт или шпилька. Класс прочности не меньше 8.

Соединяем маховик с нижним рычагом с помощью шатуна. Он изготавливается из такой же фанеры. Для увеличения длины посадочного места под ось, склеиваем две половинки. Тяги для соединения с рычагом – металлические.

Проверяем ход трапеции – рычаги должны двигаться свободно, натяжение полотна не меняется. Оси вращения можно смазать консистентной смазкой. После совмещения всех осевых соединений, производим окончательное закрепление конструкции.

Следующий этап – изготовление рабочего стола с поворотным механизмом. Поворотная дуга с прорезью выпиливается из фанеры.

Устанавливаем стол на станину, для затяжки поворотного механизма используем барашковую гайку или же изготавливаем удобный маховик из дерева. Поворот столешницы позволит производить распилы пол различными углами.

В качестве привода используется электрический шуруповерт. Патрон соединяется с осью маховика, и мы получаем съемный электромотор. Вы пользуетесь электроприбором как обычно, а когда нужно запустить самодельный лобзиковый станок – подсоединяете шуруповерт к оси маховика.

В качестве регулятора оборотов используем хомут с изменяемым усилием.

Это простое приспособление изготавливается из винтовой затяжки (от настольной лампы или струбцины) и прочного ремешка.

Чертежи для изготовления не требуются, все элементы конструкции делаются «по месту». Работать со станком удобно, несмотря на простоту конструкции.

Можно сделать станок и по этому чертежу, сути это не меняет. Все проверено – работать будет.

Очень поучительное видео английского мастера самоделкина. Подробный рассказ с показом чертежей и демонстрацией изготовления лобзикового станка из фанеры, а в качестве двигателя был применен шуруповерт, так же можно приспособить дрель.

Стационарная конструкция для интенсивной эксплуатации

Если вы профессионально занимаетесь выпиливанием – можно изготовить более сложную и надежную конструкцию. Для заготовок подбираем прочные и твердые материалы, чтобы уменьшить паразитные вибрации при работе.

  1. Станина вырезается из тяжелой ДСП плиты (можно использовать старую мебель), стойка под рычажную конструкцию из текстолита или оргалита. Сами рычаги изготавливаются из квадратной стальной трубы. Заготовки не обязательно покупать, их можно найти у себя в гараже (сарае) или на пунктах приема вторсырья

  1. Крепежные элементы для полотна можно изготовить самостоятельно или подобрать от старого лобзика (ножовки по металлу). Применяются обычные пилки для лобзикового станка по дереву. Закрепить зажимы можно винтами, или при помощи олова и паяльника

  1. Не имеет значения, от какого устройства вы возьмете привод. Главное – исправный электродвигатель и работоспособный редуктор. Мощность вам не потребуется, крутящий момент обеспечат передаточные отношения шестерен
Читайте также:  Картины для стен своими руками бумагой

Конструкция собирается из штатных элементов редуктора. При необходимости крепление шатуна можно усилить дополнительной вставкой из металла. Все стойки и крепежные элементы выполняются из металла. Так и вибраций меньше, и износа не будет.

  1. Материал столешницы не имеет значения, главное жесткость и гладкость. Необходимо предусмотреть поворот вокруг продольной оси. Поэтому рабочая прорезь должна быть длинной

  1. Чтобы во время работы ваши руки были свободны, электропривод лучше запускать с помощью ножной кнопки или педали. Вы можете воспользоваться старым приспособлением от швейной машинки или изготовить кнопку самостоятельно

  1. Для того чтобы сделать лобзиковый станок более точным, необходимо устранить люфт полотна в точке распила. Для этого устанавливается роликовая направляющая

Ее можно изготовить своими руками опять же из подручных материалов.

Рычаг, поддерживающий направляющую, делается подвижным, чтобы можно было использовать приспособление только при необходимости.

  1. Натяжение полотна в данной конструкции осуществляется пружиной. Нижний рычаг обеспечивает возвратно-поступательное движение, а верхний нужен лишь для поддержания пильного полотна

Итог: изготовить электролобзик самостоятельно можно без больших финансовых затрат. Главное определиться с задачами, и выбрать оптимальную конструкцию.

Очень интересный самодельный лобзиковый станок получился у Александра. Пошаговое описание с объяснением размеров деталей смотрите в этом видео.

Практически в любом поршневом двигателе, установленном в автомобиле, тракторе, мотоблоке, используется кривошипно- шатунный механизм. Стоят они и компрессорах для производства сжатого воздуха. Энергию расширяющихся газов, продуктов сгорания очередной порции рабочей смеси, кривошипный механизм преобразует во вращение рабочего вала, передаваемое на колеса, гусеницы или привод мотокосы. В компрессоре происходит обратное явление: энергия вращения приводного вала преобразуется в потенциальную энергию сжимаемого в рабочей камере воздуха или другого газа.

Устройство механизма

Первые кривошипные устройства были изобретены в античном мире. На древнеримских лесопилках вращательное движение водяного колеса, вращаемого речным течением, преобразовывалось в возвратно-поступательной движение полотна пилы. В античности большого распространения такие устройства не получили по следующим причинам:

  • деревянные части быстро изнашивались и требовали частого ремонта или замены;
  • рабский труд обходился дешевле высоких для того времени технологий.

В упрощенном виде кривошипно-шатунный механизм использовался с XVI века в деревенских прялках. Движение педали преобразовывалось во вращение прядильного колеса и других частей приспособления.

Разработанные в XVIII веке паровые машины тоже использовали кривошипный механизм. Он располагался на ведущем колесе паровоза. Давление пара на поршневое дно преобразовывалось в возвратно- поступательное движение штока, соединенного с шатуном, шарнирно закрепленном на ведущем колесе. Шатун придавал колесу вращение. Такое устройство кривошипно-шатунного механизма было основой механического транспорта до первой трети XX века.

Паровозная схема была улучшена в крейцкопфных моторах. Поршень в них жестко прикреплен к крейцкопфу- штоку, скользящему в направляющих взад и вперед. На конце штока закреплен шарнир, к нему присоединен шатун. Такая схема увеличивает размах рабочих движений, позволяет даже сделать вторую камеру с другой стороны от поршня. Таким образом каждое движение штока сопровождается рабочим тактом. Такая кинематика и динамика кривошипно-шатунного механизма позволяет при тех же габаритах удвоить мощность. Крейцкопфы применяются в крупных стационарных и корабельных дизельных установках.

Элементы, составляющие кривошипно-шатунный механизм, разбивают на следующие типы:

К первым относятся:

  • поршень;
  • кольца;
  • пальцы;
  • шатун;
  • маховик;
  • коленвал;
  • подшипники скольжения коленчатого вала.

К неподвижным деталям кривошипно-шатунного механизма относят:

  • блок цилиндров;
  • гильза;
  • головка блока;
  • кронштейны;
  • картер;
  • другие второстепенные элементы.

Поршни, пальцы и кольца объединяют в поршневую группу.

Каждый элемент, равно как и подробная кинематическая схема и принцип работы заслуживают более подробного рассмотрения

Блок цилиндров

Это одна из самых сложных по конфигурации деталь двигателя. На схематическом объемном чертеже видно, что внутри он пронизан двумя непересекающимися системами каналов для подачи масла к точкам смазки и циркуляции охлаждающей жидкости. Он отливается из чугуна или сплавов легких металлов, содержит в себе места для запрессовки гильз цилиндра, кронштейны для подшипников коленвала, пространство для маховика, систем смазки и охлаждения. К блоку подходят патрубки системы подачи топливной смеси и удаления отработанных газов.

Снизу к блоку через герметичную прокладку крепится масляный картер- резервуар для смазки. В этом картере и происходит основная работа кривошипно- шатунного механизма, сокращенно КШМ.

Гильза должна выдерживать высокое давление в цилиндре. Его создают газы, образовавшиеся после сгорания топливной смеси. Поэтому и то место блока, куда гильзы запрессованы, должно выдерживать большие механические и термические нагрузки.

Гильзы обычно изготавливают из прочных сортов стали, реже — из чугуна. В ходе работы двигателя они изнашиваются при капитальном ремонте двигателя могут быть заменены. Различают две основных схемы их размещения:

  • сухая, внешняя сторона гильзы отдает тепло материалу блока цилиндров;
  • влажная, гильза омывается снаружи охлаждающей жидкостью.

Второй вариант позволяет развивать большую мощность и переносить пиковые нагрузки.

Поршни

Деталь представляет из себя стальную или алюминиевую отливку в виде перевернутого стакана. Скользя по стенкам цилиндра, он принимает на себя давление сгоревшей топливной смеси и превращает его в линейное движение. Далее через кривошипный узел она превращается во вращение коленчатого вала, а затем передается на сцепление и коробку передач и через кардан к колесам. Силы, действующие в кривошипно-шатунном механизме, приводят транспортное средство или стационарный механизм в движение.

Деталь выполняет следующие функции:

  • на такте впуска, двигаясь вниз (или в направлении от коленчатого вала, если цилиндр расположен не вертикально) на, он увеличивает объем рабочей камеры и создает в ней разрежение, затягивающее и равномерно распределяющее по объему очередную порцию рабочей смеси;
  • на такте сжатия поршневая группа движется вверх, сжимая рабочую смесь до необходимой степени;
  • далее идет рабочий такт, деталь под давлением идет вниз, передавая импульс вращения коленчатому валу;
  • на такте выпуска он снова идет вверх, вытесняя отработанные газы в выхлопную систему.

На всех тактах, кроме рабочего, поршневая группа движется за счет коленчатого вала, забирая часть энергии его вращения. На одноцилиндровых двигателях для аккумуляции такой энергии служим массивный маховик, на многоцилиндровые такты цилиндров сдвинуты во времени.

Конструктивно изделие подразделяется на такие части, как:

  • днище, воспринимающее давление газов;
  • уплотнение с канавками для поршневых колец;
  • юбка, в которой закреплен палец.

Палец служит осью, на которой закреплено верхнее плечо шатуна.

Поршневые кольца

Назначение и устройство поршневых колец обуславливается их ролью в работе кривошипных- устройств. Кольца выполняются плоскими, они имеют разрез шириной в несколько десятых частей миллиметра. Их вставляют в проточенные для них кольцевые углубления на уплотнении.

Кольца выполняют следующие функции:

  • Уплотняют зазор между гильзой и стенками поршня.
  • Обеспечивают направление движения поршня.
  • Охлаждают. Касаясь гильзы, компрессионные кольца отводят избыточное тепло от поршня, оберегая его от перегрева.
  • Изолируют рабочую камеру от смазочных материалов в картере. С одной стороны, кольца задерживают капельки масла, разбрызгиваемые в картере ударами противовесов щек коленвала, с другой, пропускают небольшое его количество для смазки стенок цилиндра. За это отвечает нижнее, маслосъемное кольцо.

Смазывать необходимо и соединение поршня с шатуном.

Отсутствие смазки в течение нескольких минут приводит детали цилиндра в негодность. Трущиеся части перегреваются и начинают разрушаться либо заклиниваются. Ремонт в этом случае предстоит сложный и дорогостоящий.

Поршневые пальцы

Осуществляют кинематическую связь поршня и шатуна. Изделие закреплено в поршневой юбке и служит осью подшипника скольжения. Детали выдерживают высокие динамические нагрузки во время рабочего хода, а также смены такта и обращения направления движения. Вытачивают их из высоколегированных термостойких сплавов.

Различают следующие типы конструкции пальцев:

  • Фиксированные. Неподвижно крепятся в юбке, вращается только обойма верхней части шатуна.
  • Плавающие. Могут проворачиваться в своих креплениях.

Плавающая конструкция применяется в современных моторах, она снижает удельные нагрузки на компоненты кривошипно- шатунной группы и увеличивает их ресурс.

Шатун

Эта ответственный элемент кривошипно-шатунного механизма двигателя выполнен разборным, для того, чтобы можно было менять вкладыши подшипников в его обоймах. Подшипники скольжения используются на низкооборотных двигателях, на высокооборотных устанавливают более дорогие подшипники качения.

Внешним видом шатун напоминает накидной ключ. Для повышения прочности и снижения массы поперечное сечение сделано в виде двутавровой балки.

При работе деталь испытывает попеременно нагрузки продольного сжатия и растяжения. Для изготовления используют отливки из легированной или высокоуглеродистой стали.

Читайте также:  Масса для слепка ручек своими руками

Коленчатый вал

Преобразование осуществляет с помощь.

Из деталей кривошипно-шатунной группы коленчатый вал имеет наиболее сложную пространственную форму. Несколько коленчатых сочленений выносят оси вращения его сегментов в сторону от основной продольной оси. К этим вынесенным осям крепятся нижние обоймы шатунов. Физический смысл конструкции точно такой же, как и при закреплении оси шатуна на краю маховика. В коленвала «лишняя», неиспользуемая часть маховика изымается и заменяется противовесом. Это позволяет существенно сократить массу и габариты изделия, повысить максимально доступные обороты.

Основные части, из которых состоит коленвал, следующие:

  • Шейки. Служат для крепления вала в кронштейнах картера и шатунов на валу. Первые называют коренными, вторые — шатунными.
  • Щеки. Образуют колена, давшие узлу свое название. Вращаясь вокруг продольной оси и толкаемые шатунами, преобразуют энергию продольного движения поршневой группы во вращательную энергию коленвала.
  • Фронтальная выходная часть. На ней размещен шкив, от которого цепным или ременным приводом крутятся валы вспомогательных систем мотора- охлаждения, смазки, распределительного механизма, генератора.
  • Основная выходная часть. Передает энергию трансмиссии и далее — колесам.

Тыльная часть щек, выступающая за ось вращения коленвала, служит противовесом для основной их части и шатунных шеек. Это позволяет динамически уравновесит вращающуюся с большой скоростью конструкцию, избежав разрушительных вибраций во время работы.

Для изготовления коленвалов используются отливки из легких высокопрочных чугунов либо горячие штамповки (поковки) из упрочненных сортов стали.

Картер двигателя

Служит конструктивной основой всего двигателя, к нему крепятся все остальные детали. От него отходят внешние кронштейны, на них весь агрегат прикреплен к кузову. К картеру крепится трансмиссия, передающая от двигателя к колесам крутящий момент. В современных конструкциях картер исполняется единой деталью с блоком цилиндров. В его пространственных рамках и происходит основная работа узлов, механизмов и деталей мотора. Снизу к картеру крепится поддон для хранения масла для смазки подвижных частей.

Принцип работы кривошипно-шатунного механизма

Принцип работы кривошипно — шатунного механизма не изменился за последние три столетия.

Во время рабочего такта воспламенившаяся в конце такта сжатия рабочая смесь быстро сгорает, продукты сгорания расширяются и толкают поршень вниз. Он толкает шатун, тот упирается в нижнюю ось, разнесенную в пространстве с основной продольной осью. В результате под действием приложенных по касательной сил коленвал проворачивается на четверть оборота в четырехтактных двигателях и на пол-оборота в двухтактных. таким образом продольное движение поршня преобразуется во вращение вала.

Расчет кривошипно-шатунного механизма требует отличных знаний прикладной механики, кинематики, сопротивления материалов. Его поручают самым опытным инженерам.

Неисправности, возникающие при работе КШМ и их причины

Сбои в работе могут случиться в разных элементах кривошипно-шатунной группы. Сложность конструкции и сочетания параметров шатунных механизмов двигателей заставляет особенно внимательно относить к их расчету, изготовлению и эксплуатации.

Наиболее часто к неполадкам приводит несоблюдение режимов работы и технического обслуживания мотора. Некачественная смазка, засорение каналов подачи масла, несвоевременная замена или пополнение запаса масла в картере до установленного уровня- все эти причины приводят к повышенному трению, перегреву деталей, появлению на их рабочих поверхностях задиров, потертостей и царапин. При каждой замене масла обязательно следует менять масляный фильтр. В соответствии с регламентом обслуживания также нужно менять топливные и воздушные фильтры.

Нарушение работы системы охлаждения также вызывает термические деформации деталей вплоть до их заклинивания или разрушения. Особенно чувствительны к качеству смазки дизельные моторы.

Неполадки в системе зажигания также могут привести к появлению нагара на поршне и пего кольцах Закоксовывание колец вызывает снижение компрессии и повреждение стенок цилиндра.

Бывает также, что причиной поломки становятся некачественные либо поддельные детали или материалы, примененные при техническом обслуживании. Лучше приобретать их у официальных дилеров или в проверенных магазинах, заботящихся о своей репутации.

Перечень неисправностей КШМ

Наиболее распространенными поломками механизма являются:

  • износ и разрушение шатунных и коренных шеек коленвала;
  • стачивание, выкрашивание или плавление вкладышей подшипников скольжения;
  • загрязнение нагаром сгорания поршневых колец;
  • перегрев и поломка колец;
  • скопление нагара на поршневом днище приводит к его перегреву и возможному разрушению;
  • длительная эксплуатация двигателя с детонационными эффектами вызывает прогорание днища поршня.

Сочетание этих неисправностей со сбоем в системе смазки может вызвать перекос поршней в цилиндрах и заклинивание двигателя. Устранение всех этих поломок связано демонтажом двигателя и его частичной или полной разборкой.

Ремонт занимает много времени и обходится недешево, поэтому лучше выявлять сбои в работе на ранних стадиях и своевременно устранять неполадки.

Признаки наличия неисправностей в работе КШМ

Для своевременного выявления сбоев и начинающих развиваться негативных процессов в кривошипно- шатунной группе полезно знать из внешних признаков:

  • Стуки в двигателе, непривычные звуки при разгоне. Звенящие звуки часто бывают вызваны детонационными явлениями. Неполное сгорание топлива во время рабочего такта и взрывообразное его сгорание на такте выпуска приводят к скоплению нагара на кольцах и днище поршня, к ухудшению условий их охлаждения и разрушению. Необходимо залить качественное топливо и проверит параметры работы системы зажигания на стенде.
  • Глухие стуки говорят об износе шеек коленвала. В этом случае следует прекратить эксплуатацию, отшлифовать шейки и заменить вкладыши на более толстые из ремонтного комплекта.
  • «Поющий» на высокой звонко ноте звук указывает на возможное начало плавления вкладышей или на нехватку масла при повышении оборотов. Также нужно срочно ехать в сервис.
  • Сизые клубы дыма из выхлопного патрубка свидетельствуют о избытке масла в рабочей камере. Следует проверить состояние колец и при необходимости заменить их.
  • Падение мощности также может вызываться закоксовыванием колец и снижением компрессии.

При обнаружении этих тревожных симптомов не стоит откладывать визит в сервисный центр. Заклиненный двигатель обойдется намного дороже, и по деньгам, и по затратам времени.

Обслуживание КШМ

Чтобы не повредить детали КШМ, нужно соблюдать все требования изготовителя по периодическому обслуживанию и регулярному осмотру автомобиля.

Уровень масла, особенно на не новом автомобиле, следует проверять ежедневно перед выездом. Занимает это меньше минуты, а может сэкономить месяцы ожидания при серьезной поломке.

Топливо нужно заливать только с проверенных АЗС известных брендов, не прельщаясь двухрублевой разницей в цене.

При обнаружении перечисленных выше тревожных симптомов нужно незамедлительно ехать на СТО.

Не стоит самостоятельно, по роликам из Сети, пытаться растачивать цилиндры, снимать нагар с колец и выполнять другие сложные ремонтные работы. Если у вас нет многолетнего опыта такой работы- лучше обратиться к профессионалам. Самостоятельная установка шатунного механизма после ремонта- весьма сложная операция.

Применять различные патентованные средства «для преобразования нагара на стенках цилиндров», «для раскоксовывания» разумно лишь тогда, когда вы точно уверены и в диагнозе, и в лекарстве.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Кривошипно-шатунный механизм (КШМ) предназначен для преобразования возвратно-поступательного движения во вращательное движение (например, во вращательное движение коленчатого вала в двигателях внутреннего сгорания), и наоборот.

Состав: 3D-модели деталей, сборка

Софт: КОМПАС-3D 12

Сайт: www

Дата: 2014-11-04

Просмотры: 3 881

205 Добавить в избранное

Еще чертежи и проекты по этой теме:

Софт: КОМПАС-3D 12

Состав: 3D-модели деталей, сборка, файл анимации

Софт: КОМПАС-3D 16

Состав: Модель (кинематический и силовой анализ в пакете MSC.ADAMS), Лист 1 — Структурный и кинематический анализ механизма(КОМПАС-3D V16), Лист 2 — Силовой анализ механизма(КОМПАС-3D V16), Лист 3 — Динамический анализ механизма(КОМПАС-3D V16), Расчеты (кинематики, силового анализа и динамики в Mathcad 14), 3D модель маховика(КОМПАС-3D V16), ПЗ

Софт: КОМПАС-3D 16

Состав: Лист 1 — Структурный и кинематический анализ механизма(КОМПАС-3D V16), Лист 2 — Силовой анализ механизма(КОМПАС-3D V16), Лист 3 — Динамический анализ механизма(КОМПАС-3D V16), Расчеты (кинематики, силового анализа и динамики в Mathcad 14), Модель (кинематический и силовой анализ в пакете MSC.ADAMS), 3D модель маховика(КОМПАС-3D V16), ПЗ

Софт: КОМПАС-3D 14

Состав: 3D Сборка

Софт: КОМПАС-3D 17

Состав: 3D сборка

Дата: 2014-11-04

Просмотры: 3 881

205 Добавить в избранное

НЕТ КОММЕНТАРИЕВ

Оставьте комментарий, отзыв о работе, жалобу (только конкретная критика) или просто поблагодарите автора.

Не открывается архив или чертеж? Прочитайте, перед тем как писать комментарий.

Пожалуйста, войдите, чтобы добавить комментарии.

Источник

Оцените статью
Своими руками