Косой мост схема своими руками

Сварочный инвертор(180 А) — асимметричный (косой) мост с микроконтроллерным управлением.

Силовая часть с блоком питания и драйверами.


Представленный на схеме сварочный инвертор построен по схеме однотактного прямохода. На первичную обмотку сварочного трансформатора с помощью двух ключей подаются однополярные импульсы выпрямленного сетевого напряжения с заполнением не более 42 %. Магнитопровод трансформатора испытывает одностороннее подмагничивание. В паузах между импульсами магнитопровод размагничивается по так называемой частной петле. Размагничивающий ток благодаря обратно включенным диодам возвращает магнитную энергию, запасённую в сердечнике трансформатора обратно в источник, подзаряжая конденсаторы (2 x 1000 мкф x 400 В) накопителя.

На прямом ходу энергия передаётся в нагрузку через сварочный трансформатор и прямо включенные диоды выпрямителя (2x150EBU04). В паузе между импульсами ток в нагрузке поддерживается благодаря энергии, накопленной в дросселе. Электрическая цепь в этом случае замыкается через обратные диоды (2x150EBU04). Хорошо известно, что на эти диоды приходится бОльшая нагрузка, чем на прямые. Причина – ток в паузе течёт дольше чем в импульсе.

Конденсатор 1200 мкф x 250 В включенный в сварочные провода через резистор 4,3 Ом обеспечивает чёткое зажигание дуги. Пожалуй, это одно из удачных схемных решений для поджига в косом мосте.

Ключи косого моста работают в режиме жёсткого переключения. Причём режим включения заведомо облегчен всегда присутствующей индуктивностью рассеивания сварочного трансформатора. И, поскольку к моменту включения ключей считается, что магнитопровод трансформатора полностью размагничен, то по причине отсутствия тока в первичной обмотке, потерями на включение можно пренебречь. Потери на выключение – очень существенные. Для их снижения параллельно каждому ключу установлены RCD-снабберы.

Для обеспечения чёткой работы ключей, в моменты между включениями на их затворы подаётся отрицательное напряжение благодаря специальной схеме включения драйверов. Каждый драйвер питается от гальванически изолированного источника (около 25 В) блока питания. Напряжение питания “верхнего” драйвера используется для включения реле К1, контакты которого шунтируют пусковой резистор.

Блок питания (классический маломощный флайбэк) имеет 3 гальванически изолированных выхода. При исправных деталях начинает работать сразу. Напряжение для драйверов – 23-25В. Напряжение 12 В используется для питания блока управления.

Существенные радиаторы нужно предусмотреть для входного выпрямителя, ключей и выходного выпрямителя. От размеров этих радиаторов и интенсивности их обдува будет зависеть постоянная времени работы аппарата. Поскольку аппарат обеспечивает существенный сварочный ток (до 180 А), ключи нужно обязательно припаять к медным пластинам толщиной 4 мм, затем эти “бутерброды” прикрутить к радиаторам через теплопроводную пасту. О том как это сделать написано здесь . В месте крепления ключей посадочное место радиатора должно быть идеально плоским без сколов и раковин. Желательно чтобы в месте крепления ключей радиатор имел сплошное тело толщиной не менее 10 мм. Как показала практика для лучшего отвода тепла не нужно изолировать ключи от радиатора. Лучше изолировать радиатор от корпуса аппарата. В обдув нужно поставить также трансформатор, дроссель и обязательно все резисторы мощностью 25 и 30 Вт. Остальные элементы схемы в радиаторах и обдуве не нуждаются.

Читайте также:  Подставка под мусорные пакеты своими руками

Блок управления.

Блок управления построен на основе распространённого ШИМ-контроллера TL494 с задействованием одного канала регулирования. Этот канал стабилизирует ток в дуге. Задание тока формирует микроконтроллер с помощью модуля CCP1 в режиме ШИМ на частоте примерно 75 кГц. Заполнение ШИМ будет определять напряжение на конденсаторе C1. Величина этого напряжения определяет величину сварочного тока.

С помощью микроконтроллера выполняется так же блокировка инвертора. Если на вход DT(4) TL494 будет подан высокий логический уровень, то импульсы на выходе Out исчезнут и инвертор остановится. Появление логического нуля на выходе RA4 микроконтроллера приведёт к плавному старту инвертора, то есть к постепенному увеличению заполнения импульсов на выходе Out до максимального. Блокировка инвертора используется в момент включения и при превышении температуры радиаторов.

Вот что получилось в железе. Блок питания, драйвера и блок управления на одной плате.

В моём аппарате индикатор и клавиатура подключены к блоку управления через компьютерный шлейф. Шлейф проходит в непосредственной близости от радиаторов ключей и трансформатора. В чистом виде такой конструктив приводил к ложному нажатию на клавиши. Пришлось применить следующие спец. меры. На шлейф одето ферритовое кольцо К28x16x9. Шлейф скручен (насколько позволяла его длина). Для клавиатуры и термостатов использованы дополнительные подтягивающие резисторы 1,8К, зашунтированные керамическими конденсаторами 100 пкф. Такое схемное решение обеспечило помехоустойчивость клавиатуры, полностью исключены ложные нажатия клавиш.

Хотя, моё мнение – нужно не допускать помехи в блок управления. Для этого блок управления должен быть отделён от силовой части сплошным металлическим листом.

Настройка инвертора.

Силовая часть пока обесточена. Предварительно проверенный блок питания подключаем к блоку управления и включаем его в сеть. На индикаторе загорятся все восьмёрки, затем включится реле и, если контакты термостатов замкнуты, то индикатор покажет задание тока 20 А. Осциллографом проверяем напряжение на затворах ключей. Там должны быть прямоугольные импульсы с фронтами не более 200 нс, частотой 40-50 кГц напряжением 13-15В в положительной области и 10 В – в отрицательной. Причём в отрицательной области импульс должен быть заметно длиннее.

Если всё так, собираем полностью схему инвертора и включаем его в сеть. На индикацию сначала будут выведены восьмёрки, затем должно включиться реле и индикатор покажет 20 А. Кликая кнопками, пробуем изменять задание тока. Изменение задания тока должно пропорционально изменять напряжение на конденсаторе C1. Если изменив задание тока не нажимать на кнопки более 1 минуты, то произойдёт запись задания в энергонезависимую память. На индикаторе кратковременно появится сообщение “ЗАПС”. При последующем включении инвертора величина задания тока будет равна значению, которое записалось.

Если всё так, устанавливаем задание 20 А и включаем в сварочные провода нагрузочный реостат сопротивлением 0,5 Ом. Реостат должен выдерживать протекание тока не менее 60 А. К выводам шунта подключаем вольтметр магнитоэлектрической системы со шкалой на 75 мВ, например прибор Ц 4380. На нагруженном инверторе пытаемся изменять задание тока, и по показаниям вольтметра контролируем ток. В этом режиме реостат может издавать звук, напоминающий звон. Его не стоит боятся – это работает токоограничение. Ток должен меняться пропорционально заданию. Выставляем задание тока 50 А. Если показания вольтметра не соответствуют 50 А, то на выключенном инверторе впаиваем сопротивление R1 другого номинала. Подбирая сопротивление R1 добиваемся соответствие задания тока измеренному.

Читайте также:  Объемное мыло своими руками

Проверяем работу термозащиты. Для этого обрываем цепь термостатов. На индикаторе высветиться надпись “EroC”. Импульсы на затворах ключей должны исчезнуть Восстанавливаем цепь термостатов. Индикатор должен показать установленный ток. На затворах ключей должны появиться импульсы. Их длительность должна плавно увеличится до максимальной.

Если всё так, можно попытаться варить. После 2-3-х минут сварки током 120-150 А выключаем инвертор из сети и ищем 2 самых горячих радиатора. На них нужно установить защитные термостаты. По возможности термостаты устанавливаются вне зоны обдува.

Вес аппарата со сварочными проводами 11,5 кг.

Источник

Косой мост принцип работы

Наиболее часто применяемые высокочастотные преобразователи в сварочных инверторах

Для построения сварочного инвертора применяют три типа высокочастотных преобразователей, а именно преобразователи включенные по схемам: асимметричный или косой мост, полумост, а также полный мост. Резонансные преобразователи являются подвидами схем полумоста и полного моста.

По системе управления данные устройства можно поделить на:

— ШИМ (широтно-импульсной модуляцией);

— ЧИМ (регулирование частоты);

Могут существовать комбинации всех трех систем.

Типы высокочастотных преобразователей:

  • Система полумост с ШИМ
  • Резонансный полумост
  • Ассиметричный или «косой» мост
  • Полный мост с ШИМ
  • Резонансный мост
  • Полный мост с дросселем рассеивания

Система полумост с ШИМ

Блок схема показана ниже:

Один из самых простых и надежных преобразователей семейства двухтактных.

«Раскачка» напряжения первичной обмотки трансформатора силового будет равна половине напряжения питания – это недостаток данной схемы. Но плюсом является то, что можно применить трансформатор с меньшим сердечником, не опасаясь захода в зону насыщения. Для сварочных инверторов имеющих мощность порядка 2-3 кВт такой силовой модуль вполне перспективен.

Для нормальной работы силовых транзисторов необходимо ставить драйверы. Это связано с тем, что при работе в режиме жёсткого переключения транзисторам необходим высококачественный управляющий сигнал. Также обязательно наличие безтоковой паузы, чтоб не допустить одновременное открытие транзисторов, иначе они выйдут из строя.

Резонансный полумост

Довольно перспективный вид полумостового преобразователя, его схема показана ниже:

Простота резонансного полумоста в сравнении с полумостом с ШИМ обусловлена тем, что здесь присутствует индуктивности резонансной. Она ограничивает максимальный ток транзисторов, а коммутация транзисторов происходит в нуле тока или напряжения.

Протекающий по силовой цепи ток будет иметь форму синусоиды. Это снимет нагрузку с конденсаторных фильтров. В этом случае драйверы необязательны. Переключение можно выполнить импульсным трансформатором. Качество управляющих импульсов не существенно. Но должна присутствовать бестоковая пауза.

Здесь можно обойтись без токовой защиты, а форма вольт-амперной характеристики ВАХ будет иметь падающий вид, что не требует ее параметрического формирования.

Выходной ток будет ограничиваться только индуктивностью намагничивания трансформатора и сможет достигать значительных величин, если возникнет короткое замыкание КЗ. Это свойство положительно влияет на поджиг и горение дуги, но его необходимо учитывать при подборе выходных диодов.

Выходные параметры регулируются изменением частоты. Но фазное регулирование является более перспективным для сварочных инверторов. Благодаря ему можно избежать неприятного явления в виде совпадения режима короткого замыкания с резонансом. Кроме этого, он увеличивает диапазон регулирования выходных параметров. Применение фазовой регулировки может позволить изменять выходной ток в диапазоне от 0 до Imax.

Читайте также:  Лигерад велосипед своими руками

Ассиметричный, или «косой» мост

Это однотактный, прямоходовой преобразователь, блок-схема которого приведена ниже:

Он популярен у радиолюбителей и у производителей сварочных инверторов. Первые сварочные инверторы строились по таким схемам – асимметричный или «косой» мост. Их качества — помехозащищенность, широкий диапазон регулирования выходного тока, надежность и простота.

— довольно высокие токи, проходящие через транзисторы;

— повышенное требование к качеству управляющего импульса. Возникает необходимость использовать мощные драйвера для управления транзисторами;

— высокие требования к выполнению монтажных работ;

— наличие больших импульсных токов, что повышает требования к конденсаторным фильтрам.

Для поддерживания нормальной работы транзисторов необходимо добавление RCD цепочек – снабберов.

Несмотря на указанные недостатки и низкий КПД устройства по схеме, асимметричный или «косой» мост до сих пор применяется в сварочных инверторах.

Полный мост с ШИМ

Представляет собой классический двухтактный преобразователь, блок-схема которого показана ниже:

По этой схеме можно получать мощность в 2 раза больше, чем при включении типа полумост, и в 2 раза больше, чем при включении типа «косой» мост, при этом величины токов и соответственно потери во всех трех случаях будут равны. Это можно объяснить тем, что напряжение питания будет равным напряжению «раскачки» первичной обмотки трансформатора силового.

Для того, чтоб получить одинаковые мощности с полумостом (напряжение раскачки 0,5Uпит.) необходим ток в 2 раза! меньше чем для случая полумоста. В схеме полного моста с ШИМ транзисторы будут работать поочередно – Т1, Т3 включены, а Т2, Т4 выключены и соответственно наоборот при изменении полярности. Через трансформатор тока отслеживают и контролируют значения амплитудное тока протекающего через эту диагональ. Для его регулирования есть два наиболее часто применяемые способы:

  • Оставить неизменным напряжение отсечки, а изменять только длину импульса управления;
  • Проводить изменения уровня отсекающего напряжения по данным с трансформатора тока при этом оставляя неизменным длительность импульса управления;

Оба способа могут позволить проводить изменения выходного тока в довольно больших пределах. У полного моста с ШИМ недостатки и требования такие же, как и у полумоста с ШИМ.

Резонансный мост

Является наиболее перспективной схемой высокочастотного преобразователя для сварочного инвертора, блок-схема которого показана ниже:

Резонансный мост не сильно отличается от полного моста с ШИМ. Разница в том, что при резонансном подключении последовательно с обмоткой трансформатора подключают резонансную LC цепочку. Но ее появление полностью меняет процесс перекачки мощности. Уменьшатся потери, увеличится КПД, снизится нагрузка на входные электролиты и электромагнитные помехи уменьшатся. Драйверы нужно применять только тогда, когда используются MOSFET транзисторы, имеющие емкость затвора более 5000 pF. IGBT могут обойтись лишь наличием импульсного трансформатора.

Управление выходным током может производится двумя способами – частотным и фазовым.

Полный мост с дросселем рассеивания

Схема идентична схеме резонансного моста или полумоста, только вместо резонансной цепи LC последовательно с трансформатором включают не резонансную LC цепь. Емкость С, примерно С≈22мкф х 63В, работает как симметрирующий конденсатор, а индуктивное сопротивление дросселя L как реактивное сопротивление, величина которого будет линейно изменятся в зависимости от изменения частоты. Преобразователь управляется частотным способом. При увеличении частоты напряжения сопротивление индуктивности возрастет. А это уменьшит ток в силовом трансформаторе. Поэтому довольно большое количество промышленных инверторов строят по такому принципу ограничения выходных параметров.

Источник

Оцените статью
Своими руками