Корректор коэффициента мощности схема своими руками

Устройство импульсных блоков питания, APFC

Некоторое время назад мне задавали вопрос по поводу корректора коэффициента мощности импульсных блоков питания, попробую кратко рассказать что это такое и зачем надо.

Так уж сложилось, что в обычной жизненной ситуации вы скорее всего встретите корректор коэффициента мощности (ККМ) в блоке питания компьютера.
Нет, конечно они встречаются и в других блоках питания, даже чаще, чем в компьютерных. Но обычно это промышленные блоки питания и в быту попадаются крайне редко.
Думаю что большинство читателей моего блога и зрителей моего канала, как минимум немного ориентируются в радиоэлектронике, потому скорее всего видели компьютерный блок питания «изнутри».
Блок питания с активным корректором выглядит на первый взгляд почти также как и обычный.

Но если посмотреть внимательнее, то на «горячей» стороне можно заметить большой дроссель. Его магнитопровод может иметь разную форму, но чаще всего попадаются с кольцевыми, как и вариант на фото.
Кроме того подобные блоки питания отличаются еще и тем, что обычно в них установлен один фильтрующий конденсатор на 450-500 Вольт, а не два по 200-250. Обусловлено это тем, что часто такие блоки питания имеют широкий диапазон входного напряжения от 100-115 Вольт и переключение входного напряжения им не нужно.

Не стоит путать дроссель АККМ (активный корректор коэффициента мощности) с выходным дросселем групповой стабилизации, хотя внешне они весьма похожи. Отличие в том, что обычно дроссель корректора имеет только одну обмотку, а ДГС (дроссель групповой стабилизации), несколько.

Вообще корректор может быть не только активным, а и пассивным. В этом случае вы увидите на верхней крышке блока питания «железный» дроссель с парой проводов, внешне похожий на 50Гц трансформатор мощностью 10-20 Ватт.
Такой вариант также жизнеспособен, но заменить полноценный активный корректор он не может.

Теперь немного о том, зачем это вообще все надо. Думаю вы знаете, что ток в сети имеет форму синусоиды, действующее напряжение 220-230 Вольт (у нас), амплитудное — 310-320 Вольт. Не буду сейчас рассказывать чем отличается действующее от амплитудного, сделаю это в другой раз, но кто еще не видел, синусоида выглядит так, как показано на этом рисунке.

Дальше переменный ток выпрямляется и фильтруется конденсаторами. Чаще всего применяется такая схема, представляющая из себя диодный мост и пару (иногда один) конденсаторов.
Конечно там есть еще входной фильтр, предохранитель, но в данном случае они нас не касаются.

При нормальной напряжение на конденсаторах будет примерно 280-320 Вольт в зависимости от их емкости и мощности нагрузки, я об этом уже рассказывал в своем видео посвященному устройству блоков питания.
Но так как напряжение в сети по сути 100 раз в секунду меняется от нуля до 320 Вольт и опять до нуля, а в цепи есть диодный мост, то ток заряда конденсаторов фильтра течет не всегда, а только когда амплитудное напряжение превысит напряжение на конденсаторах.
При этом ток в цепи 220-230 Вольт будет выглядеть как показано вверху этой картинки. Получается, что блок питания потребляет энергию не постоянно, а только на пиках синусоиды. Если предположить, что БП потребляет в итоге энергию всего 20% времени, то ток в момент когда идет заряд конденсаторов, будет в 5 раз больше среднего тока потребления. Например ток 1 Ампер, мощность 220 Ватт, значит пики тока будут доходить до 5 Ампер.

Проблема эта вылезла «в полный рост» тогда, когда количество импульсных блоков питания превысило некую «критическую массу». В итоге было придумано довольно простое и эффективное решение. Кстати, в развитых странах все мощные блоки питания должны иметь корректор коэффициента мощности, но так как это недешево, то производители недорогих блоков питания на этом экономят в первую очередь.

Читайте также:  Перила деревянные для балкона своими руками

Как я сказал, решение проблемы простое и по сути лежит на поверхности. А базой для этого решения является обычный степ-ап преобразователь напряжения. На схеме виден дроссель, транзистор, диод, ШИМ контроллер и конденсатор.
При открывании транзистора в дросселе накапливается энергия, которая при закрытии транзистора суммируется с входным напряжением и поступает в нагрузку, подзаряжая выходной конденсатор. Такая схема часто используется в повербанках для получения 5 Вольт из 3.7.

Но если скрестить обычный блок питания и эту схему, то мы получим активный корректор коэффициента мощности.
При этом важно то, что фильтрующий конденсатор после диодного моста не ставится, его роль выполняет конденсатор небольшой емкости, обычно 0.47-1.0мкФ, он нужен только для компенсации импульсного характера потребления корректора.

В итоге преобразователь пытается «высосать» из сети все что можно в диапазоне уже не 220-230 Вольт, а 40-80. Кстати, мощные блоки питания далеко не всегда могут работать в широком диапазоне, хотя и могут при этом содержать в своем составе АККМ. Просто в таких режимах корректору приходится тяжело и работу в широком диапазоне они не обеспечивают, хотя и продолжают корректно работать.

Здесь я попробовал наглядно показать разницу в работе обычного БП и БП с корректором.
Красным выделен вариант работы обычного блока питания, заштрихованная часть отображает зону, где есть потребление тока. Видно что зона довольно узкая, соответственно ток будет большим. Причем чем больше емкость конденсаторов фильтра, тем уже будет эта зона и тем ниже будет коэффициент мощности.
Синим и зеленым я показал пару вариантов работы активного корректора, один начинает работу примерно от 100 Вольт амплитудной составляющей, второй примерно от 50 Вольт. Видно что зона стала шире, соответственно ток пропорционально падает и растет коэффициент мощности.
В общем-то данная зона может начинаться почти от нуля, тогда коэффициент будет равен единице, но обычно он составляет 0.98-1, этого более чем достаточно.

Чем же чреват этот пресловутый коэффициент мощности.
Из-за пиков тока происходит кратковременная перегрузка сети, в следствие чего могут начаться проблемы в старых и изношенных сетях. Возможно отгорание нулевого провода в трехфазных сетях с совсем печальными последствиями.

А вот схема входной части компьютерного блока питания имеющего в своем составе активный корректор мощности, он выделен синим цветом.
Не удивляйтесь что на схеме нет ШИМ контроллера, который им управляет, часто он расположен на отдельной плате, а иногда интегрирован в общий ШИМ контроллер. Т.е. помимо одного-двух штатных каналов имеется еще и выход для управления транзистором корректора. Такой вариант удобен для производителя, но далеко не всегда удобен для ремонтника. В самом начале я показал фото блока питания, там как раз вышел из строя узел корректора, а так как микросхема управляет всем, то выгорела и она. Найти замену я не смог, потому Бп лежит мертвым грузом и возможно будет разобран на запчасти, тем более что они весьма неплохого качества.

Что же дает нам корректор, сначала преимущества:
1. Характер потребления почти такой же как у активной нагрузки, соответственно нет пиковых перегрузок.
2. Часто такие БП имеют расширенный диапазон входного напряжения и лучше работают в плохих электросетях.
3. Емкость фильтрующего конденсатора нужна меньше, так как паузы без тока меньше.
4. Инвертору блока питания легче работать, ведь по сути он питается стабилизированным напряжением.

Теперь недостатки.
1. Выше цена.
2. Меньше надежность
3. Могут быть сложности при работе с некоторыми моделями UPS.

Иногда идут споры, по поводу КПД таких блоков питания. Я придерживаюсь мнения, что КПД одинаков, так как хоть корректор и имеет собственное потребление, но основному инвертору работать легче, потому то на ото и выходит.

Читайте также:  Научится все делать своими руками

Ну и конечно же видео, в качестве дополнения. А я как всегда жду ваших вопросов как в комментариях здесь, так и под видео.

Источник

Корректор коэффициента мощности. Схема. Расчет. Принцип действия.

Схема корректора коэффициента мощности (10+)

Корректор коэффициента мощности. Схема. Расчет. Принцип действия

Проблемы отбора мощности классическим выпрямителем

Основной проблемой классического выпрямителя с накопительным конденсатором, работающего от синусоидального или другого непрямоугольного напряжения, является тот факт, что отбор энергии от сети происходит только в те моменты времени, когда напряжение в ней больше, чем напряжение на накопительном конденсаторе. Действительно, конденсатор может заряжаться только если к нему приложено напряжение, большее чем то, до которого он уже заряжен.

Причем в те моменты, когда напряжение сети становится больше напряжения конденсатора, ток зарядки очень велик, а все остальное время он нулевой. Получается, что, например, для синусоидального напряжения питания, наблюдаются всплески тока при достижении напряжением амплитудных значений. Если Ваше устройство потребляет небольшую мощность, то это можно стерпеть. Но для нагрузки, скажем, 1 кВт 220В всплески тока могут достигать 100 А. Что совершенно неприемлемо.

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Государственные стандарты на силовые устройства запрещают их изготовление и продажу, если не обеспечивается равномерный отбор мощности.

Чтобы решить эту проблему, применяют корректоры коэффициента мощности.

Простейший корректор коэффициента мощности

Устройство отличается от классического выпрямителя тем, что зарядка накопительного конденсатора осуществляется через дроссель. Электрический ток через дроссель не может измениться моментально. Соответственно, дроссель как бы усредняет ток зарядки. При правильном выборе дросселя, ток зарядки будет идти постоянно, вне зависимости от текущего значения напряжения. Мощность, соответственно, от сети тоже будет отбираться постоянно, а не только при пиках напряжения. Сила тока не будет иметь ярко выраженных всплесков. Все поставленные задачи решены.

Для нормального функционирования схемы нужен дроссель, который не будет насыщаться при максимально возможном потребляемом токе. Индуктивность дросселя должна быть такой, чтобы пульсации тока не превышали 1А, чтобы соответствовать государственным стандартам. Для 50 Гц индуктивность составляет 3 Гн. Для нагрузки 1 кВт такой дроссель, конечно, можно изготовить, но весить он будет более 50 кг, а стоить больше 10 000 рублей с учетом современной цены меди.

Импульсный корректор коэффициента мощности

Силовая импульсная электроника дает другое решение.

Это классический повышающий преобразователь напряжения. Конденсатор, подключенный к мосту, выбирается небольшой емкости, только для фильтрации высокочастотных импульсов. Напряжение на нем пульсирует. Повышающий преобразователь преобразует пульсирующее напряжение в постоянное на конденсаторе C5 за счет ШИМ модуляции. При фиксированном выходном напряжении входной ток пропорционален входному напряжению, то есть изменяется плавно по синусоидальному закону, без скачков и всплесков.

Устройство рассчитано на выходную мощность 500 Вт. Как увеличить мощность устройства, читайте по ссылке.

Ф — фильтр импульсных помех. Обычно используется уже готовый покупной.

М — Мост на нужное напряжение и ток.

C6 — 1 мкФ 400 В.

C5 — 470 мкФ 400 В электролитический.

VD3 — быстродействующий диод, рассчитанный на напряжение 1000 В и ток, который будет потреблять Ваша нагрузка.

R8 — 2 МОм, R9 — 2 кОм, подстроечный, R10 — 2 кОм.

R4 — 300 кОм, R5 — 30 кОм.

R3 — 100 кОм, C4 — 1 нФ. Эти элементы задают частоту работы ШИМ контроллера. Подбираем их так, чтобы частота составила 30 кГц.

Читайте также:  Песочница детская кораблик своими руками

C3 — 0.05 мкФ. Это частотная коррекция цепи обратной связи. Если выходное напряжение начинает пульсировать или недостаточно быстро устанавливается при изменении тока нагрузки, то эту емкость надо подобрать.

C1 — 1000 мкФ. C2 — 4700 мкФ.

VD1 — Стабилитрон 15 В. R1 — 300 кОм 0.5 Вт.

VT1 — Высоковольтный транзистор на 400 вольт. Это схема запуска, через этот транзистор ток идет только в начале работы. После появления ЭДС на обмотке L2, транзистор закрывается. Так что рассеиваемая мощность на этом транзисторе невелика.

D2 — интегральный стабилизатор напряжения (КРЕН) на 12В.

Добавление от 27.02.2013 Иностранный производитель контроллеров Texas Instruments преподнес нам удивительно приятный сюрприз. Появились микросхемы UC3823A и UC3823B. У этих контроллеров функции выводов немного не такие, как у UC3823. В схемах для UC3823 они работать не будут. Вывод 11 теперь приобрел совсем другие функции. Чтобы в описанной схеме применить контроллеры с буквенными индексами A и B, нужно вдвое увеличить резистор R6, исключить резисторы R4 и R5, подвесить (никуда не подключать) ножку 11. Что касается российских аналогов, то нам читатели пишут, что в разных партиях микросхем разводка разная (что особенно приятно), хотя мы пока новой разводки не встречали.

L1 — дроссель 2 мГн, рассчитанный на ток 3 А. Можно намотать на сердечнике Ш16х20 четырьмя проводами 0.5 мм, сложенными вместе, 130 витков, зазор 3 мм. L2 — 8 витков провода 0.2 мм.

Смотрите также онлайн расчет дросселя. В форме задайте амплитуду пульсаций тока равной нулю, чтобы получить нужные нам параметры.

Выходное напряжение формируется на конденсаторе C5.

Комментарий: В параметрах дросселя была ошибка, на которую нам указали читатели. Теперь она исправлена. Кроме того, для повышения стабильности работы схемы может быть полезно ограничить максимальное время открытия силового полевого транзистора. Для этого устанавливаем подстроечный резистор между 16 ножкой микросхемы и минусовым проводом питания, а движок соединяем с ножкой 8. (Как, например, на этой схеме.) Подстраивая этот резистор, можно регулировать максимальную скважность импульсов от ШИМ-контроллера.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Можно ли предположить, что такой корректор мощности (электронный) позволяет экономить энергию потребляемую из эл. сети? Если да, то будет ли это зависеть напрямую от ёмкосли конденсатора С5? Уточнение: я имею ввиду условия для активной нагрузки, которой безразлично постянное или переменное напряжение. С уважением, Сергей. Читать ответ.

Здравствуйте! Подскажите пожалуйста как рассчитать индуктивность дросселя и ёмкость эл. конденсатора для ‘простейшего корректора коэффициента мощности’ на другую частоту. Например на 100, 200, 300 кГц. Спасибо! Читать ответ.

Здравствуйте! Можно ли обмотку l2 дополнительно использовать для питания: драйверов ir2101 и гальванически связанного с ними контроллера инвертора трехфазного асинхронного двигателя. Питание драйверов верхних ключей бутстрепное. С уважением, Борис Читать ответ.

Здравствуйте! В статье ‘Импульсный корректор коэффициента мощности’ нет достаточной информации о сердечнике дросселя L1. Не могли бы Вы указать материал сердечника, а также его типоразмер, для варианта корректора, мощностью до 100 ватт. С уважением, Гоша. Читать ответ.

Полумостовой импульсный стабилизированный преобразователь напряжения, .
Как работает полу-мостовой стабилизатор напряжения. Где он применяется. Описание.

Режим непрерывного / прерывного (прерывистого) тока через катушку инду.
Сравнение режимов непрерывного и прерывного тока. Онлайн расчет для повышающей, .

устройство для резервного, аварийного, запасного питания котла, циркул.
У меня установлен газовый отопительный турбо котел, требующий электропитания. Кр.

Понижающий импульсный преобразователь напряжения, источник питания. Пр.
Понижение напряжения постоянного тока. Как работает понижающий преобразователь н.

Переменный резистор, потенциометр, сопротивление, управляемое, регулир.
Управляемый напряжением переменный резистор, электронная регулировка сопротивлен.

Источник

Оцените статью
Своими руками