Схема многодиапазонного регенеративного КВ приёмника. Часть 1
Как построить самый лучший в мире регенератор? Думаем, рассуждаем, действуем!
Ну ведь говорил же я себе: Да хватит уже этой фигнёй заниматься! И вот нате – опять сижу, лужу-паяю очередной регенератор, а параллельно ещё и думаю: А где же, ёксель-моксель, лето? Холодно пипец, да и на кой нахрен это вообще кому надо?
В нашу-то эпоху развития и мировой гегемонии цифровых технологий?! Да-а-а. а вернее – НЕТ, чуваки, пора бы завязывать с этим регенераторо-строением, мать его в душу за ногу, а еже с ним и с пьянством, матом и прочими излишествами нехорошими! Отныне будем паять «свистки»!
А потом ещё посидел, подумал: А ведь нет, жизнь после 50-ти только начинается! Успокоился мал-помалу и налил себе ещё 50.
И опять-таки, действительно – что как ни простейшее регенераторное устройство на 3-4 транзисторах может помочь начинающему радиолюбителю разобраться со всевозможными нюансами работы транзисторных каскадов и при минимуме затрат добиться максимального результата?
Ладно, будем считать, определились. Темой нашего сегодняшнего заседания обозначим: Доведение работы регенеративного приёмника до состояния “едрического тушкана”, «гипербалического парабалоида» или «полного Джигурды», что другими словами означает – до уровня, близкого к недостижимому идеалу.
Но для начала, давайте, поразмышляем, а какие устройства регенераторов в современном мире принято считать хорошими? Я бы так с высоты птичьего полёта заприметил 3 радиоконструкции. Это:
1. Регенератор, выполненный по схеме ёмкостной трёхточки. Появился на свет на заре ламповой эры улавливания радиоэфира, однако в отечественном фольклоре часто фигурирует, как «Транзисторный регенеративный приёмник по схеме Сергея Беленецкого»;
2. Конструкция приёмника с транзисторами, загнанными в барьерный режим, описанная в буржуйских источниках ещё в 80-годах прошлого столетия, но прижившаяся у нас под расхожим славянским именем «Ванюша»;
3. Регенеративный КВ приёмник фабричного производства MFJ-8100, представленный публике несколько позже. На сей раз был окрещён нашей изобретательной братвой погонялом вымерших американских индейцев – «Могиканин».
Понятно, что каждый из перечисленных приёмников имеет свои неоспоримые плюсы, однако стоит копнуть на штык поглубже, как наружу вылезают маленькие и средних размеров минусы. Какие такие это минусы?
1. Регенератор ёмкостная трёхточка, как ни крути – это приёмник однодиапазонный, то есть рабочими для него являются частоты, отстоящие от оптимальной частоты (обусловленной номиналами фазосдвигающих элементов) не более чем на ±30. 40%. На частотах, которые в два или более раз выше или ниже оптимальной частоты, такой регенератор работать либо не будет вообще, либо будет, но результат окажется значительно хуже ожидаемого.
2. Об основных недостатках «Могиканина» мы с вами подробно порассуждали на странице – Ссылка на страницу. Там же отчасти их успешно устранили, однако и схема несколько усложнилась, и одного маленького, но, сука, вредного аксессуара избежать не удалось! И аксессуаром этим оказались вроде бы безобидные и малозаметные разделительные конденсаторы.
Откровенно говоря, не знаю почему, однако эти «диверсанты» оказывают явно негативное влияние на стабильную работу любых регенераторов, работающих в широкой полосе частот. Увеличиваешь их ёмкость, начинаются шероховатости на верхних диапазонах, уменьшаешь – на нижних, а это, знаете ли – прилично раздражает. Победить, конечно, можно, но осадок, блин, остаётся!
3. Генераторы с использованием барьерного режима работы транзисторов практически не имеют недостатков! Эти очень простые и крайне стабильные устройства с непосредственными связями дают возможность варьировать номиналами частотозадающих элементов в очень широких пределах и, в конечном итоге, получать рабочие частоты: от единиц герц до сотен мегагерц.
Однако при работе такого генератора в качестве регенеративного каскада приёмника, часть его достоинств перерастает в недостатки. И главным из них становится невозможность достижения на колебательном контуре значений переменного напряжения, превышающих ± 200. 250мВ. Ещё меньшими значениями (за вычетом уровня напряжения регенерации
20. 50 мВ) ограничена максимальная амплитуда сигнала на колебательном контуре, поступающего через индуктивную (либо какую иную) связь с антенны. При бОльших напряжениях, транзисторы начинают стремительно приближаться к режиму насыщения и довольно охотно плеваться продуктами нелинейностей второго, третьего, пятого, седьмого, а также иных порядков.
Результат – самый низкий, по сравнению с конкурентами, динамический диапазон при серьёзном, на мой взгляд, превосходстве по большинству остальных аспектов.
К чему это я, собственно, так подробно о «Ванюша»–подобных регенераторах да с утра пораньше?
А к тому, что целью наших сегодняшний манипуляций станет конструкция регенеративного приёмника с непосредственными межкаскадными связями (то бишь не содержащая каких-либо разделительных конденсаторов), и обладающая при этом приличными динамическими характеристиками.
Ясен хулахуп, что устройство должно иметь и электронное управление уровнем регенерации. Это, с одной стороны, создаст ощутимое конструктивное удобство, а, с другой – минимизирует условия для формирования серьёзной зависимости глубины обратной связи от частоты.
А теперь немного лирики и глубокомыслия! Эх, было время золотое, когда я свято верил, что при тщательной развязке колебательного контура от активных элементов, отвечающих за электронное управление регенерацией, всё будет ништяк, и рабочая частота при регулировке глубины ОС никуда не сдвинется.
Докладываю: был не прав, вспылил, но теперь считаю своё суждение безобразной ошибкой!
А что так? – спросит пытливый ум читателя.
А дело в том, уважаемые господа присяжные заседатели, что, как ни изолируй ты активные элементы, как ни воюй, да и вообще, как башкой ни бейся ты о стену, но любой генератор при уменьшении глубины ПОС (а соответственно, при уменьшении амплитуды колебаний) обладает следующим свойством: Он стремится частоту этих колебаний слегка повысить. Не будем вдаваться в физическую сущность этого процесса, но такое есть, такое было и такое будет во веки веков. Аминь!
Теперь, когда мы непосредственно к колебательному контуру подключаем какой-либо полупроводник для регулировки ПОС, то для уменьшения её глубины (а вместе с ней и амплитуды колебаний) необходимо снизить его коэффициент передачи. Делается это, как правило, снижением тока покоя транзистора. Происходит следующее: ток покоя уменьшается, усиление транзистора уменьшается, глубина ПОС уменьшается, амплитуда колебаний уменьшается, частота увеличивается.
Но это ещё не всё. У нас, – как говаривал Михал Михалыч, – было с собой, а конкретно – ёмкости транзисторных переходов. Они, как широко известно в узких кругах, при уменьшении тока имеют свойство как раз таки увеличиваться, что приводит к дополнительной прибавке к ёмкости контура и некоторому компенсирующему понижению частоты колебаний генератора (регенератора). Как выявил эксперимент, он же опыт, сын ошибок трудных – лучше, если этих транзисторов с регулируемым током будет не один, а два (как в Ванюше), тогда частотная компенсация у регенератора будет близкой к идеальной.
Ну вот, как-то так. Однако хватит этой унылой теоретической мутотени, ибо пора переходить к делу, а конкретно – к схеме электрической принципиальной!
Рис.1 Схема многодиапазонного регенеративного КВ приёмника
В отличие от устройств системы «Ванюша», в которых регенеративный каскад выполнен на двух биполярных транзисторах (ОК – ОБ), в приёмнике, приведённом на Рис.1, данную функцию выполняют полевой (Т2) и биполярный (Т1) транзисторы, включённые по схеме «общий исток» – «общий эмиттер».
Такое схемотехническое построение позволило сохранить непосредственные связи полупроводников как между собой, так и с катушкой колебательного контура регенератора.
Для обеспечения высокого показателя динамических характеристик приёмника, полевой транзистор T2 должен иметь довольно высокое значение параметра напряжения отсечки Uзи_отс. Желательно, чтобы оно находилось в диапазоне
2,5. 3,5 В, тогда и максимально допустимая неискажённая амплитуда сигнала на вторичной обмотке L1 будет иметь близкое к этим цифрам значение.
Меняя напряжение на истоке полевого транзистора Т2 посредством многооборотного переменного резистора R8, мы одновременно изменяем и его ток покоя. А поскольку транзистор Т1 подключён к стоку полевика по постоянному току, то и его ток покоя синхронно изменяется в том же направлении.
На полевом транзисторе Т3 выполнен стандартный истоковый детектор, а на малошумящем полевике Т4 – каскад предварительного усиления низкой (звуковой) частоты. Конденсатор С4, включённый параллельно стоковому резистору R12, образует вместе с ним фильтр нижних частот с частотой среза около 3,5 кГц. Наличие этого каскада, помимо дополнительной фильтрации, позволяет нам не сильно разрываться при выборе оконечного усилителя и иметь возможность использования какой-нибудь простенькой ИМС.
Теперь, что касается такого элемента, жизненно важного для любого регенератора, как – КАТУШКА.
Давайте-ка, немного порассуждаем о том, что нам в чистом остатке необходимо от неё поиметь?
А поиметь нам от неё надо максимально возможную ненагруженную добротность и изо всех сил поднатужиться, чтобы нагрузить её исключительно в минимальном объёме.
Поскольку сопротивление биполярного транзистора со стороны коллектора довольно высоко (сотни кОм), а входные сопротивления полевиков, идущих к L1, и того больше (сотни МОм), то единственное, что может поднагрузить нашу катушку – это её первичная обмотка, вернее низкоомное сопротивление антенны, которая подключается к этой обмотке.
Отмечу походу, что от входного усилителя, подобного тому, что стоит в «Могиканине», было решено отказаться в угоду всё тем же пресловутым динамическим характеристикам.
Так к чему это я шкрябую всю эту подробную нуднятину?
А к тому, чтобы у бдительного радиолюбителя возникло понимание, что коэффициент трансформации (то есть отношение витков вторичной и первичной обмоток) должен быть довольно высоким, и ферритовое либо какое ещё кольцо с неединичной магнитной проницаемостью в данной истории лучше засунуть куда-нибудь подальше. Именно это нам позволит получить в катушке необходимое и относительно высокое количество витков, а первичную обмотку сделать состоящей из 1. 2 витков.
К тому же, чего там греха таить, такая катушка индуктивностью 6,1 мкГн от какого-то несложившегося регенератора у меня завалялась в столе. Она была намотана на баранке из рулона узкого (по-моему 12 мм) канцелярского скотча, обёрнутого стеклотканевой изолентой, и содержала 50 витков 1 мм провода. Осталось намотать только пару витков первички и приступить к сборочному процессу.
Итак. Регенеративный каскад спаян, номинал R11 временно заменён на 3кОм, C6, опять же, временно отпаян, осциллограф с частотомером подключён к истоку Т3. Смотрим, что же у нас уродилось на поверку дня.
Что сразу порадовало?
Порадовало то, что регенератор, собранный по рассчитанной и наспех начерченной схеме, завёлся сразу и заработал одинаково хорошо во всём отведённом ему диапазоне частот (проверка велась в полосе 3,5. 10 МГц), причём без какого-либо подбора элементов и прочих танцев с бубнами.
Высокодобротная катушка, как ей и положено, обеспечила отличную частотную стабильность, а регулировка ПОС посредством изменения тока покоя сразу двух транзисторов – мягкий подход к порогу и малый уход частоты при изменении уровня регенерации. Так, к примеру, на частоте 7 МГц при изменении амплитуды колебаний от 20 до 200 мВ, уход частоты составил – не более 1кГц.
Измерения велись при различных подключённых к первичной обмотке резисторах (от 50 до 200 Ом), выступающих в качестве эквивалента сопротивления антенны. Без этих резисторов на частотах ниже 7МГц регулировка уровня регенерации постепенно становилась всё менее плавной, поэтому, если работа приёмника предполагается с антенной типа «кусок провода, болтающийся в окне» либо какой иной конструкцией с высоким сопротивлением, то резистор R14 крайне желателен. Если же антенна имеет нормированное сопротивление, не превышающее 200. 300 Ом, то его (резистор) вполне можно проигнорировать.
Что огорчило?
Отсутствие на обозримом горизонте свободных выходных, чтобы собраться-таки, да и дооформить агрегат в законченную конструкцию. Ибо проверка его в условиях запоганенных городских эфиров – мероприятие весьма надобное и во всех отношениях для дела пользительное.
К тому же результаты проведённых измерений сигнализируют о том, что этот регенератор – то, что надо регенератор, однако убедиться в этом нам предстоит в процессе предстоящих сопоставительных испытаний.
Продолжение на следующей странице
Источник
КВ приемник мирового уровня? Это не очень просто!
Автор: Как я и обещал, в этой статье мы будем строить простой всеволновый приемник, работающий с различными видами модуляции, доступный для повторения радиолюбителями, имеющими определенный навык работы с паяльником, принципиальными схемами и измерительными приборами.
Вдаваться в теорию радиосвязи и знакомить с азами электроники и радиотехники в рамках этой статьи я не возьмусь, для этого имеется большое число хорошей литературы, написанной без фонетических шероховатостей и матерных излишеств разными умными людьми.
В оппоненты я пригласил начинающего радиолюбителя, живо интересующегося радиосвязью, гуляющего по форумам и имеющего определенную теоретическую подготовку.
Оппонент: Привет! Как дела?
Автор: Вашими молитвами. Но не будем отвлекаться на любезности — перейдем сразу к делу. Набросал намедни структурную схему радиприемника, рекомендую ознакомиться.
Рис.1
Оппонент: Обычная схема, ничего особенного, таких я видел много, хотя на вид, конечно, попроще, чем у «приемника мирового уровня».
Автор: Значительно попроще, но главная плодотворная дебютная идея здесь состоит в выборе первой промежуточной частоты. Обрати внимание, не 55,5 МГц, как в упомянутом приемнике Кульского, не 55,845 как в Дегенах и Туксанах, а 43 Мгц. «Что за магическая цифра?»- предвижу я вопрос, «и чем она лучше любой другой?». Да тем, что при перестройке гетеродина в пределах 43-103 Мгц, мы охватываем нашей схемой ДВ-СВ-КВ диапазон от 0 гц-30 Мгц, а зеркальным к нему оказывается канал 86-146 Мгц. То есть, простым переключением входных фильтров с НЧ на ВЧ, мы дополнительно к нижнему диапазону добавляем вещалки на УКВ 87,5-108МГц, авиадиапазон 118-137 Мгц и любительский 2 м диапазон на 144-146 МГц.
Оппонент: И что, кого-то можно услышать на 2м диапазоне?
Автор: Имеющий уши, да что-нибудь услышит.
Бывают тут и «круглые столы» с обсуждением философских вопросов типа: “Где взять заземление?”, и трепетное ностальгирование по забытому вкусу портвейна «Агдам», и бескомпромиссная борьба за чистоту эфира некоего Семёна Ильича, позиционирующего себя как опытного радиолюбителя с позывным, авторитет которого завоёван не в сортирах местной администрации Роскомнадзора, а с паяльником в руках и собственной работы антенной в огороде.
Борьба эта, как основа морально-воспитательной воли радиолюбителя, сводится к сорокаминутному обкладыванию половыми органами некоего корреспондента за «влезание на чужую частоту и засерание эфира».
Корреспондент в свою очередь тоже не отсиживается в окопе, и злобно пробиваясь сквозь эфирные шумы, кладёт со своим прибором и на Семёна Ильича, и на его позывной, и на весь Роскомнадзор со всеми его структурами и «старыми пердунами».
В общем, обычная жизнь обычного радиолюбительского диапазона.
Оппонент: Не вижу на схеме ни одной системы АРУ, а в приемнике «мирового уровня» их применено аж две штуки. В чем подвох?
Автор: Да нет подвоха. АРУ, конечно, вещь полезная, но давайте разберемся, когда и для чего нужна автоматическая регулировка усиления.
Во-первых, АРУ позволяет избежать перегрузку усилителя низкой частоты при в резком изменении уровня принимаемого сигнала и делает прослушивание эфира более комфортным.
Во-вторых, предотвращает интермодуляционные искажения, возникающие во входных цепях, смесителях и УПЧ приемника при достижении уровня сигнала на антенном входе определенной критической величины.
Теперь давайте рассуждать логически. Я, например, очень сильно сомневаюсь в том, что начинающий радиолюбитель с данным приемником будет использовать полноразмерную коротковолновую антенну, скорее всего — это будет либо комнатная антенна, либо кусок провода произвольной длины, выкинутый в окно. В таких суррогатных антеннах большие величины ЭДС не наводятся, конечно, если кусок провода вдруг не оказался равным половине длины волны (например 20 метров на 7 Мгц диапазоне), либо за стеной не стучит морзянку вражеский шпион, но вероятность таких событий мне кажется не очень высокой. К тому же, у нас входе приемника стоит переменный резистор, включенный правда не совсем по учебнику, и предназначенный в большей степени для согласования произвольного волнового сопротивления нашего куска провода с, извините, характеристическим сопротивлением входных фильтров, но вполне справляющийся с функцией ослабления чрезмерно мощного входного сигнала.
Поедем дальше. Фильтры у нас пассивные, а смесители, давайте договоримся — с приличными динамическими характеристиками. Хорошо, выдохнули, перегружаться пока нечему. Теперь самое уязвимое, с точки зрения интермодуляционных искажений, место нашего радиоприемника — УПЧ, именно его в большинстве конструкций охватывают АРУ. Но ведь, если не задаваться целью получения от этого узла большого усиления, а сделать его, главным образом, ответственным за селективные свойства нашего аппарата, то и здесь никаких проблем не возникает.
Оппонент: Так какое усиление должен иметь УПЧ и, если, оно будет невелико, за счет чего мы обеспечим показатели чувствительности?
Автор: Навскидку его значение примем таким, чтобы общее усиление каскадов от антенного входа до выхода УПЧ было равно 10 по напряжению. Почему 10? А потому, что сигнал с выхода УПЧ уже не тот, что поступает на вход приемника, а узкополосный, тщательно отфильтрованный нашими входными и кварцевыми фильтрами и, даже, будучи усиленным в 10 раз, не создаст никаких проблем последующим каскадам.
Предположим, что мы хотим построить качественный радиоприемник в большом деревянном корпусе и ждем от него такого же звука, как от какого-нибудь легендарного лампового Грюндика. Это касается прежде всего УКВ ЧМ диапазона, поэтому каскад, ответственный за детектирование ЧМ сигнала должен быть продуман особенно щепетильно. Хотя и продумывать здесь ничего не надо, а надо просто впаять недорогую микросхему К174ХА6 (или какой-нибудь импортный аналог) по стандартной схеме включения и наслаждаться звуком приемника высшего класса.
Чувствительность К174ХА6 составляет 60-80 мкв, что в совокупности с усилением предыдущих каскадов, даст общую чувствительность устройства- 6-8 мкв. По-моему, вполне пристойно. К тому же, в подобных микросхемах, на входах стоят усилители-ограничители, которые делают амплитуду выходного сигнала независимой от уровня ВЧ сигнала, поэтому в данном диапазоне применение схемы АРУ будет абсолютно лишним.
Теперь, что касается SSB. Детектор SSB сигнала представляет собой, как правило, простой смеситель с переносом сигналов промежуточной частоты в область звуковых частот и усилитель звуковой частоты, коэффициент усиления которого, как и его шумовые характеристики, определяют чувствительность тракта. Такой усилитель легко реализовать на малошумящем операционном усилителе, а к нему уже, посредством присоединения двух диодов и полевого транзистора в режиме переменного резистора, добавить простейшую, но весьма эффективную схему АРУ.
Самая грустная песня связана с детектором АМ сигнала. Учебники учат нас, что для нормальной работы амплитудного детектора необходим могучий УПЧ с эффективной системой АРУ и обладающий коэффициентом усиления 80-120 дб. Именно коэффициент усиления такого УПЧ и определяет чувствительность приемника. Но мы ведь не относимся к тем, кто не ищет простых путей. А кто ищет — тот всегда найдет! (из «Песни о весёлом ветре»), а я бы добавил: И выпьет!
Америкашки все придумали за нас. Замечательная микросхема AD8307 представляет собой логарифмический усилитель и детектор в одном флаконе. Чувствительность такой микросхемы — около 40 мкв при динамическом диапазоне 92 dB, что в совокупности с усилением предыдущих каскадов, выдаст на-гора 4 мкв общей чувствительности.
Поскольку усилитель внутри этой микросхемы — логарифмический, ждать от этого АМ тракта хай-эндовского звучания не приходится, но поверьте, не дождетесь вы его на КВ диапазонах и от профессиональных приемников, сделанных по всем канонам жанра. Зато эта логарифмическая характеристика усилителя избавляет нас от необходимости применения системы АРУ.
Справедливости ради сообщу, что первым данную микросхему, предназначенную для контроля уровня ВЧ-сигнала в радиоприемном тракте, применил Нидерландский радиолюбитель Gert Baars в журнале Elektor Electronics 7-8/2009, а потом, в журнале Радиоконструктор 10/2009 оперативно подсуетился уже наш автор А. Иванов, за что ему большое человеческое спасибо.
Вот ведь, вроде бы простой вопрос про АРУ, а пришлось описать почти всю работу приемника.
Оппонент: Да, с этим более-менее понятно, а смесители, я так понимаю, будут двойными балансными на диодах. Их везде рекламируют как самые высокодинамичные и малошумящие. Видел много схем высококачественных приемников с использованием смесителей на диодах Шоттки. В Дагенах, по-моему, тоже такие стоят.
Автор: Ты прав, мой друг Горацио! — хотел бы воскликнуть я, но пока воздержусь. Диодные кольцевые, они же двойные балансные смесители всем хороши — и быстродействующи, и малошумящи, и любимы разработчиками, но в нашем случае не подходят, так как включают в себя широкополосные трансформаторы (ШПТ), в том числе и по входу. А по входу у нас стучится полоса радиочастот в диапазоне 100 кгц — 146 Мгц, в надежде быть обработанной нашим смесителем. Трансформатор с таким коэффициентом перекрытия по частоте не снился даже старику Рэду, при всей его любви к радиочастотной аппаратуре. Кстати, очень рекомендую всем радиолюбителям, независимо от уровня подготовки, ознакомиться с его книгой «Справочное пособие по высокочастотной схемотехнике», очень многие вопросы и утомительные обсуждения на форумах отпочкуются за ненадобностью.
Но, если не двойной балансный смеситель на диодах, то что еще нам может обеспечить высокие динамические характеристики без применения трансформаторов? Очень просто — двойной балансный смеситель на транзисторах, а конкретно микросхема фирмы Philips Semiconductors — SA612A. Голландский производитель постарался и выпустил для нас микросхему с динамическим диапазоном 85-90дб и диапазоном входных частот 0-500 Мгц, да еще и обладающую усилением в 17 дб. Ясен пень, необходимость ШПТ в таком смесителе отсутствует. Отличная микросхема и недорогая.
Оппонент: Это хорошо, что недорогая, но есть у меня еще вопрос по поводу входных диапазонных фильтров. Где-то их ставят, где-то нет, в приемнике «мирового уровня» их восемь штук. Есть ли смысл ставить эти фильтры в нашей схеме?
Автор: Смысл может быть и есть, но его так же мало, как крабов в крабовых палочках.
Хотя нет, был не прав, вспылил, считаю своё высказывание безобразной ошибкой.
Всё-таки не зря в очень дорогих моделях радиоприёмников эти фильтры присутствуют, причём часто делаются с возможностью отключения.
Возникают ситуации, когда они оказывают незаменимую помощь в отделении полезного сигнала от мощных внеполосных помех, но в рамках этой статьи мы не станем копать слишком глубоко, а рассудим также, как разработчики агрегатов средней ценовой категории.
Тут все просто, и много времени не займет.
Диапазонные фильтры необходимы в супергетеродинных приемниках с низкой промежуточной частотой для обеспечения мало-мальски приемлемой избирательности по зеркальному каналу (обычно 20-30 дб), а в приемниках прямого преобразования — для подавления побочных каналов приема на частотах, кратных частоте гетеродина.
А теперь внимательно смотрим на структурную схему нашего радиоприемника (рис.1) и видим — у нас не приемник прямого преобразования, не супергетеродинный приемник с низкой промежуточной частотой, не электрический чайник, а технически продвинутый агрегат, соответствующий последним веяниям супергетеродиностроения — с двойным преобразованием частоты и высокой первой промежуточной частотой. Да, у него как и любого супергетеродина есть зеркальные каналы приема, но частоты этих каналов разнесены между собой на очень большую величину, а именно на двойную величину промежуточной частоты.
То есть, если частота гетеродина, к примеру, равна 44 Мгц, наш первый смеситель, нагруженный полосовым фильтром 43 Мгц увидит входные частоты 44-43=1 Мгц и 44+43=87 Мгц по зеркальному каналу. Легко заметить, что скурпулезно рассчитанные переключаемые фильтры НЧ и ВЧ на входе приемника способны обеспечить избирательность по зеркальному каналу 70-80 дб.
Возникают у нас зеркалки и по второй ПЧ-10,7 Мгц. С ними успешно борется полосовой фильтр, настроенный на 43 Мгц, причем его не обязательно делать кварцевым, двух-трехзвенный фильтр на связанных резонансных контурах способен обеспечить величину избирательности по второй ПЧ порядка 60-70 дб.
Остается только добавить, что за избирательность по соседнему каналу отвечают кварцевые или пьезокерамические переключаемые фильтры на 10,7 Мгц, имеющие на каждый вид модуляции свою полосу пропускания (для широкополосной УКВ ЧМ модуляции- стандартные с полосой около 100 кгц, для АМ- 10-16 кгц, для SSB- 3 кгц). В принципе, для SSB модуляции можно отказаться от применения узкополосного фильтра, а использовать уже имеющийся более широкополосный, применяемый для АМ. В этом случае после УНЧ в SSB детекторе необходимо предусмотреть ФНЧ с частотой пропускания около 3000 кгц. Порядок этого фильтра и будет определять избирательность приемника по соседнему каналу в режиме SSB.
Оппонент: И какая это будет величина избирательности? А еще, как влияют параметры генератора плавного диапазона на параметры всей схемы? И какой мы будем делать ГПД, аналоговый как в приемнике «мирового уровня», или синтезатор на микропроцессоре?
Автор: По поводу избирательности: 12 дб для фильтра 2-го порядка, 24 дб для фильтра 4-го порядка и т.д.- по 6 децибел на каждую прибавку порядка фильтра.
По поводу генератора плавного диапазона в двух словах не расскажешь, разговор будет взрослый, а я вижу тоскливую усталость во взгляде собеседника.
Оппонент: Да уж, не мешало бы переварить информацию.
Автор: Давайте переваривать, мы здесь не шутки шутим, диарея головного мозга нам ни к чему. А на следующей странице мы закончим с описанием структурной схемы и начнем постепенно уточнять формы и контуры нашей конструкции.
Источник