Контроллеры вентиляторов своими руками
Форум радиолюбителей » СХЕМЫ » АВТОМАТИКА » Схемы управления кулерами (Приампы для кулеров охлажения радиаторов) |
Схемы управления кулерами
Вс, 01.12.2013, 14:25 | Сообщение # 1 |
ГУБЕРНАТОР В данной ветке хотелось бы собрать массив схем с описанием работы управления кулерами охлаждающих радиаторы выходных каскадов УНЧ. — Измерение температуры от -55°С до +125°С (шаг 0,1°С)
«*» обозначены компоненты необходимые для защиты от статического Кнопками «+» и «-» устанавливают температуру включения нагрузки (на экране в В первом сегменте отображается точка, если Т Третий вариант управления: Подстроечными резисторами R3 и R9 устанавливают пороги срабатывания ступеней охлаждения. Светодиод HL1 – индикатор, причем его яркость сигнализирует о напряжении на вентиляторе, а, следовательно, и о температуре. При желании получить больше информации, узел индикации можно усложнить, применив, например, два светодиода с разным цветом свечения. Если необходимо контролировать температуру нескольких радиаторов, то можно использовать несколько однотипных термисторов, включенных параллельно (пропорционально уменьшив сопротивление R2). При этом, вследствие нелинейности температурной характеристики, система будет в большей степени реагировать на наиболее горячий объект, что повысит надежность устройства в целом. Схему можно питать и от источника с меньшим напряжением, но при этом снизится максимальная эффективность охлаждения. Биполярные транзисторы – любые маломощные с коэффициентом h21Э не менее 150, например, КТ3102 (я использовал импортные ВС546В). Полевые транзисторы – любые средней мощности. Из отечественных подойдут КП740-КП743. Можно использовать и маломощные КП505А-В, однако ток вентилятора в этом случае не должен превышать 150 мА. Из импортных подойдут практически все транзисторы серий IRF5хх, IRF 6хх. Стабилитрон VD1 должен выдерживать ток вентилятора, который при пониженном напряжении питания составляет 40…50% от номинального (а это порядка 50. 150 мА). Напряжение стабилизации выбирается таким образом, чтобы напряжение на двигателе составляло 5…6 вольт (т.е. 6. 10 вольт). При более низком напряжении не все вентиляторы устойчиво работают, более высокое напряжение увеличит уровень шума. Если не удастся подобрать подходящий стабилитрон, можно воспользоваться его аналогом Поскольку основным для усилителя все же является пассивное охлаждение, то следует использовать «конвекционные» (обыкновенные) радиаторы с редкими толстыми ребрами. Вентилятор – корпусной вентилятор подходящего размера от компьютера. Процессорные вентиляторы использовать не рекомендуется, несмотря на их больший воздушный поток – они более шумные. Термистор необходимо установить так, чтобы обеспечивался хороший тепловой контакт с радиатором (с использованием термопасты), и на него не попадал воздушный поток от вентилятора. Поскольку температура внутри корпуса усилителя может достигать 40…50 градусов, возможна установка дополнительного вентилятора, выдувающего воздух из корпуса. Все вентиляторы включаются параллельно. Пятый вариант управления: Предлагаемое устройство при более простой схеме лишено этого недостатка. В паузах и при малом уровне громкости вентилятор работает на пониженных оборотах, практически не производя шума. При возрастании громкости вентилятор включается на полную мощность, но его шум теперь маскируется акустическим сигналом. Выходное напряжение с УМЗЧ подаётся на вход устройства через делитель R1R2. Подстроечным резистором R2 регулируют порог срабатывания устройства. Выпрямленное диодом VD1 напряжение звуковых сигналов при увеличении их уровня заряжает конденсатор С1. Через резистор R3 он разряжается при уменьшении уровня входного сигнала. Стабилитрон VD2 ограничивает напряжение, подаваемое на затвор, на безопасном для транзистора VT1 уровне. При достижении порогового уровня напряжения на конденсаторе С1 транзистор открывается, увеличивая ток через двигатель до номинального. При снижении уровня выходного сигнала УМЗЧ конденсатор С1 быстро разряжается через резистор R3, транзистор закрывается и двигатель М1 переходит на работу при пониженных оборотах. Диод VD3 защищает транзистор от реакции нагрузки (обмотки двигателя). Если двигатель бесколлекторный, этот диод можно исключить. К деталям особых требований не предъявляется, резисторы и конденсаторы могут быть любых типов. Диоды VD1 и VD3 — любые маломощные кремниевые, например, КД509А, КД510А, Д220. Стабилитрон VD2 — на напряжение стабилизации 7. 10 В, например, Д814А, КС175А. При токе, потребляемом двигателем свыше 0,5 А, необходимо применить более мощный транзистор, например, IRFZ44N или отечественный КП812А1. Налаживание устройства заключается в подборе резистора R4 для обеспечения работы вентилятора с допустимым уровнем шума и конденсатора С2 для надёжного запуска электродвигателя. При увеличении ёмкости конденсатора следует иметь в виду, что разряжается он через малое сопротивление сток-исток транзистора VT1, и для исключения повреждения транзистора последовательно с конденсатором большей ёмкости целесообразно включить резистор сопротивлением несколько ом. Шестой вариант управления аналогичен по сути пятому: Сигнал с выхода усилителя мощности подается на инвертирующий вход компаратора DA1.1 через резистор R1. Стабилитрон VD2 защищает вход компаратора от отрицательного напряжения, поступающего от усилителя мощности при усилении отрицательных полупериодов сигнала. На элементах R2 и VD1 собран параметрический стабилизатор, который задает порог срабатывания компаратора. Резистор R3 служит нагрузкой выходного каскада DA1.1, выполненного по схеме с открытым коллектором. Конденсатор С1 и резистор R4 задают время задержки выключения вентилятора. Диод VD3 необходим для предотвращения разрядки конденсатора С1 через резистор R3. Задержка позволяет сохранить напряжение на вентиляторе еще некоторое время для удаления выделившейся на теплоотводе энергии. Подстроечным резистором R5 можно регулировать время задержки выключения. Сигнал с выхода компаратора DA1.2 управляет транзистором VT1, включающим вентилятор охлаждения. вот пару схем, с микросхемой и на транзисторах: Источник Ручной контроллер скорости вентилятора на несколько каналовПриветствую всех зашедших! Вентиляторы (они же кулеры) давно стали привычным явлением в электронике, ведь, к сожалению, КПД электронных схем далеко не всегда высок и иногда значительная часть потребляемой электрической энергии рассеивается в виде тепла на радиаторах. Ярким примером служат ноутбуки и системные блоки — практически в каждом из них есть по несколько кулеров. При этом в компьютерах установлены специальные датчики температуры, регулирующие скорость вращения кулеров в зависимости от интенсивности нагрева радиаторов, необходимо это, в первую очередь, для снижения уровня шума в момент простоя компьютера, а также для продления срока жизни самих кулеров. Порой регуляторы оборотов вентиляторов бывают необходимы и в самодельных конструкциях, например, мощных усилителях. Представленный в статье регулятор ручной — то есть позволяет установить фиксированную частоту вращения, с возможностью её изменения от минимума от максимума. Чуть более сложные схемы предполагают использование датчиков температуры и регулировку оборотов в зависимости от их показаний, однако порой требуются и обычные ручные регуляторы. Данная схема миниатюрна, а потому хорошо подходит для независимого управления целой пачкой кулеров — автор подготовил несколько печатных плат, рассчитанный на 2, 3 и 4 вентилятора. Скачать платы для программы Sprint Layout можно в архиве в конце статьи.
Потенциометры устанавливаются прямо на плату, а дальнейшем их можно с помощью гаек закрепить на какой-либо панели и надеть ручки на валы, в результате получится весьма симпатичный блок управления, как показано ниже. Удачной сборки! Источник Простой 6-ти канальный регулятор оборотов вентилятораИдея немножко «утихомирить» компьютер появилась давно и вот результат. К регулятору можно подключить вентиляторы с двух и трех пиновыми разъемами без какой либо переделки. Имеется возможность регулировки минимального уровня напряжения, подаваемого на вентилятор. Так же имеется возможность изменения режима индикации работы каждого канала реобаса с помощью перемычек. Схема реобаса проще некуда: Переменным резистором R1 производится регулировка напряжения, подаваемого на вентилятор. Подстроечным резистором R2 устанавливается минимальное значение напряжения. При установке перемычки в положение 1-2 светодиод VD1 будет мигать с частотой равной удвоенной частоте вращения вентилятора, в положении 2-3 будет гореть постоянно. Если перемычку не ставить светодиод гореть не будет. Конденсатор C1 позволяет гарантированно провести запуск вентилятора при пониженном напряжении питания. Транзистор можно использовать любой p-n-p с током коллектора от 1 ампера. При использовании вентиляторов до 80 мм включительно подойдут КТ814, КТ816, BD140. При использовании более крупных вентиляторов, или при подключении нескольких вентиляторов на один канал, лучше поставить транзистор помощнее, например КТ837, КТ835, КТ818 и др. Светодиод можно поставить любой — какой нравится, с пересчетом R4 (я использовал резистор номиналом 100 Ом, так как светодиод работает в импульсном режиме, при постоянном свечении его сопротивление желательно увеличить). В собранном устройстве в виду простоты схемы настраивать нечего, кроме как установить резистором R2 минимальное напряжение для вентилятора. Так же необходимо перемычкой установить требуемый режим светодиода. Печатная плата, вид со стороны элементов: Расположение элементов, вид сверху: Вид снизу (участок с элементами) Разъемы под вентиляторы можно установить как прямые так и угловые, подстроечные резисторы вертикальные или горизонтальные типа СП3-38А(Б), кроме крайнего правого канала. Фотографии собранного устройства: Ввиду простоты схемы имеются некоторые недостатки: — регулировка производится вручную (это скорее особенность); Источник |