Это ещё одна статья о всем известной микросхеме TP4056, многим она уже полюбилась и была протестирована неоднократно армией радиолюбителей. Да и ко мне дошли слухи о чудодейственной микросхеме. Заказал у китайцев пять подопытных, стал думать гадать, как собрать — навесом или на платке. Тут самая обычная схема — несколько деталек и сама микросхема.
Тут мне под руку попали кусочки текстолита и решил собрать на печатной плате, но не все так просто. Картридж у меня выдохнулся от пары десятков перезаправок. Встал вопрос купить новый, но цена у него заоблачная, как для меня. Тогда есть только один выход, рисовать лаком для ногтей, но лака мне больше не дают, сказали, что лак покупался не для того, чтоб я тратил его на какие-то бляшки нет, это не опечатка, какие-то бляшки — да, не ожидал.
В общем сидел я и думал чем бы себя занять, вспомнил, что платки можно рисовать не только лаком, но и парафином и маркером, парафин не для меня, я только если на Пасху яйцо раскрасить могу, и то не очень. Но с маркером идея неплоха.
Сел за руль своего двух колёсного педального байка и отправился в магазин на поиски заветного перманентного маркера. Нашёл сразу если кому интересно такой маркер стоит 6 грн. Это на 29.02.2016
Рисуем платку, мой метод такой: сделать метки канцелярской кнопкой на текстолите и соединить их маркером, как в детстве в журналах такая игра была.
Ладно, отклонился от темы, продолжаем. Травил в растворе медного купороса, могу сказать, что это наилучшее средство, я говорю конечно от своего лица — у каждого свои предпочтения, скажу лишь, что мне в нем нравится это цена, долговечность и конечно то, что он не пачкает все вокруг как хлорное железо.
Припаиваем наши деталюхи: пара SMD резисторов и два конденсатора.
Для тестирование выбрал аккумулятор с батареи ноутбука. Что-ж, заряд пошел, ну а зарядит или не зарядит — увижу утром, а сейчас спать.
Утро показало, что заряд прошел успешно, но спешил в школу и забыл сфотографировать. Всем удачи в повторении, а с вами, как всегда, был Kalyan.Super.Bos
KALYAN-SUPER-BOS — 07.03.2016 — Прочитали: 11857
КОНТРОЛЛЕР ПОДЪЕМНОГО ЭЛЕКТРОМАГНИТА
Как управлять подъемным электромагнитом — теория и практика создания схемы подходящего контроллера для этих целей.
Усилитель мощности звука с двойной термостабилизацией — теория работы схемы и практическое тестирование.
Изучим различные типы стабилизаторов напряжения — от простых схем на стабилитроне, до транзисторных и микросхемных.
Источник
ЗАРЯДНОЕ ДЛЯ АВТО НА КОНТРОЛЛЕРЕ
Обычные зарядные устройства к автоаккумуляторам, продающиеся по цене от 2000 рублей, представляют из себя простейший блок питания с диодным мостом и амперметром для контроля тока. Можно ли долго пользоваться таким ЗУ, если цена нового свинцового аккумулятора Bosch достигает 5000 руб? Каждый сам решает для себя. Вот автор и решил немного потратиться и создать зарядку, имеющую все необходимые режимы по быстрому и безопасному восстановлению ёмкости АКБ.
Описание зарядного устройства
Измерение напряжения аккумулятора.
Измерение тока заряда и разряда. Ток измеряется датчиком тока на ОУ.
Стабилизация зарядного тока на выбранном уровне. Алгоритм регулятора – пошаговый, управление током – ШИМ (Установка тока ведется из основного окна прибора.). 3.1 Выбор режима заряда – постоянным током или пульсирующем (десульфатация).
Отключение заряда если напряжение достигло заданного уровня выбранном в меню.
Стабилизация тока разряда на выбранном уровне в режиме разряда. Алгоритм регулятора – пошаговый, управление током – ШИМ.
Подсчет Ампер*часов при разряде АБ. Разряд производится только после полной зарядки АБ. (При выборе режима разряд, если АБ не дозаряжен, автоматически производится дозаряд, а затем уже разряд с подсчетом Ампер*часов.)
Включение подсветки дисплея (LIGHT). Выбор в меню. Параметр Подсветка вкл – подсветка включена всегда. В режиме авто выкл – подсветка включается при подаче питания на 30 сек и при нажатии на кнопки. Через 30 сек от последнего нажатия на кнопки подсветка отключается.
При любой остановке программы подается прерывистый сигнал (0,5 Гц) на вывод 4 МК. Отключается сигнал нажатием кнопки старт.
Программа отслеживает правильность установки напряжений. Минимальное напряжение (Umin) не может быть установлено выше либо равным максимальному (Umax). И наоборот.
В режиме старт нажатие на кнопку PLUS или MINUS выводит на индикатор текущую информацию о состоянии процесса. В верхней строке ток и напряжение. В нижней строке оставшееся время (подробно) и выходная мощность в процентах.
Схема и печатные платы ЗУ
Схема управляющего блока
Схема источника питания
Работа зарядного устройства
1. Программа запускается/останавливается нажатием на кнопку старт из любого окна программы. Если кнопка нажата, когда программа запущена, устройство переходит в режим финиш (окончание работы программы). Следующее нажатие переводит устройство в первоначальное состояние (основное окно индикатора).
2. Если напряжение на аккумуляторе ниже, чем Umax/4, считается, что аккумулятор не подключен или неисправен. На дисплей выводится надпись No Bat. В режиме START название выбранного режима мигает.
Режим Зарядка
Программа контролирует напряжение и ток на АБ. Если напряжение ниже заданного в настройках Umax – работает стабилизатор зарядного тока с заданием Is. Если напряжение достигло Umax – остановка программы. Индикация заряд выкл.
Если напряжение стало выше Umax на 0.2 – остановка программы, индикация ERROR в верхней строке. В нижней строке напряжение, при котором произошло отключение.
Если ток заряда I превысил ток Is на 0.2 на время более 5 сек – остановка программы, индикация ERROR.
Если истекло время заряда (параметр H, часы) – остановка программы, индикация ERROR в верхней строке. В нижней строке надпись Time out.
Режим Разряд
Если при старте программы напряжение на АБ ниже Umax, включается дозаряд АБ с током Is. После достижения напряжения Umax начинается разряд АБ с током Ii. Ведется подсчет емкости АБ.
Когда напряжение на АБ достигнет Umin разряд прекращается, на индикатор выводится индикация разряд выкл и емкость на АБ-. AH Vm 11.0 – минимальное напряжение на АБ.
Если истекло время дозаряда или разряда (для дозаряда и заряда устанавливается время H) – остановка программы, индикация ERROR.
Если ток заряда или разряда превысил установленные на 0.2 – остановка программы, индикация ERROR в верхней строке. В нижней строке ток, при котором произошло отключение.
Режим КТЦ АКБ
При старте программы включается заряд АБ с током Is. Через 1 сек АБ переключается на разряд с током Ii. Еще через 1 сек АБ снова переключается на заряд. Так продолжается до тех пор, пока напряжение не достигнет Umax – программа останавливается. Индикация КТЦ выкл. Если напряжение стало выше Umax на 0.2 – остановка программы, индикация ERROR. Если ток заряда или разряда превысил установленные на 0.2 – остановка программы, индикация ERROR.
Если истекло время заряда (параметр H) – остановка программы, индикация ERROR в верхней строке. В нижней строке надпись Time out.
Выбранный режим после отключения от сети не запоминается. При включении всегда режим зарядка.
Обозначение символов на дисплее
V -измеренное напряжение на АБ
Vs(max) -напряжение до какого будет произведен заряд
Vmin(m) -минимальное напряжение на АБ при котором разряд будет отключен
I -измеренный ток заряда
Is -установленный ток заряда
Id — измеренный ток разряда
Ii -установленный в меню ток разряда(стабилизация тока разряда)
Imin -минимальный ток при котором заряд будет окончен
H -время таймера. Для вех режимов.
Hi -оставшееся время до отключения по таймеру
P -емкость АБ-Аh
LED -подсветка
1.При подключении к сети устройства вывести на дисплей информацию-если АБ подключена
1.1.Напряжение до какого будет произведен заряд. По умолчанию Vs=14.2 (Диапазон выбора в меню 1-30 вольт.)
1.2.Установленный ток заряда. По умолчанию Is=0.5А.( диапазон выбора в меню 0.5 -10А.дискретность 0.5А.)
1.3.Реальное напряжение на АБ. Например-V=13.7
1.4.Режим по умолчанию — зарядка (режим можно изменить в меню. Названия режимов. заряд . разряд. ктц акб.)
РЕЖИМ 1.заряд
Если АБ не подключена-вместо напряжения на АБ вывести надпись — no bat.Все остальное как и при подключённой АБ.
Пример 1.0. батарея не подключена
Vs=14.2 Is=0.5A ? АКБ Заряд
При нажатии кнопки start — запустить установленный режим. При повторном нажатии — остановить. при запущенном режиме — название выбранного режима мигает. при остановленном — горит постоянно.
Пример 1.1. батарея подключена.
Vs=14.2 Is=0.5A V=13.7 Заряд
При запущенном режиме вместо установленного напряжения до которого будет произведен заряд отображать реальный ток заряда. Пример I = 3.6 A
Пример 1.2. идет заряд.
I=3.6A Is=0.5A V=13.7 заряд
После окончания заряда (по таймеру или по достижению установленного напряжения на АБ или ток заряда снизится до I=min) отключить заряд и вывести – заряд выкл.
Если ток заряда превышает установленный в меню. А также напряжение на АБ превысило установленное в меню-отключить заряд и вывести надпись — ERROR.
РЕЖИМ 2. разряд
2.При выборе режима- разряд (при запуске этого режима автоматически зарядить АБ до установленного напряжения и затем начать разряд.
Пример 2.0. Индикация в основном окне режима. Если режим не запущен-название режима (разряд) не мигает. При запущенном режиме, название режима используемого в данный момент (заряд или разряд) мигает.
Если режим запущен. АБ не заряжена. Идет автоматический заряд, после которого начнется разряд.
I=0.5A заряд P=0Ah
2.1 Ток разряда по умолчанию A. Диапазон выбора в меню 0.5-10 А. дискретность 0.5 А.
2.2. Hi — Время оставшееся до конца разряда после истечения которого разряд будет отключен по умолчанию.
2.3. Измеренная емкость батареи P=. Ah (пример Р = 45.4Ah).
Пример 2.1. окно в процессе разряда
Id=0.5A Hi=10 P=45.4Ah разряд
После окончания разряда подать сигнал с паузой 1 секунду. И так пока не будет включен другой режим. Сигнал подать на вывод 4 МК. Светодиод out. На дисплей вывести надпись верху — P=. Ah. Vm=11.0 внизу — разряд OFF.
Пример 2.2. разряд окончен
P=100.3Ah Vm=11.0 Разряд выкл
РЕЖИМ 3. Ктц акб. Десульфатация.
В основном окне режима, если режим запущен, название режима (КТЦ) мигает. Если не запущен — не мигает.
3.1. Ток заряда по умолчанию Is = 5А. Диапазон 0.5-10 А
3.2. Ток разряда Диапазон 0.5-10 А.
3.3. Напряжение на АБ. Частота 1 Гц.
Пример 3.0. идет десульфатация.
I=5.0A Id=0,5A V=14.2 КТЦ-АКБ
После окончания заряда(по таймеру или при достижении установленного напряжения, режим отключить) вывести надпись — КТЦ ВЫКЛ. И напряжение на АБ.
Пример 3.1.конец работы.
V=14.7 КТЦ ВЫКЛ
Остальные настройки в меню. Все файлы находятся в архиве. За подробностями обращайтесь на форум. Автор: Александрович.
Форум по обсуждению материала ЗАРЯДНОЕ ДЛЯ АВТО НА КОНТРОЛЛЕРЕ
Самодельный активный предварительный усилитель с НЧ-ВЧ регулировками на ОУ TL072, для УМЗЧ.
Самодельный светодиодный драйвер для фотосъёмки с возможностью переключения цветовой температуры.
Сборник из 10 конструкций и схем приставок к цифровым мультиметрам, расширяющих функционал измерительных приборов.
Для накопления энергии, полученной от ветрогенераторов и солнечных батарей, используются аккумуляторные батареи (чаще всего на 12В). Когда аккумулятор заряжен, контроллер заряда переключает источник электроэнергии с аккумулятора на нагрузочный балласт. Весь представленный ниже материал является свободным переводом англоязычной страницы Майка Дэвиса (Mike Davis) о новом улучшенном контроллере заряда, спроектированном на таймере 555 серии. Этот проект занял первое место в конкурсе Utility (категория 555 Design Contest)!
Майк Дэвис рассказывает.
Новая схема контроллера заряда аккумуляторной батареи
Контроллер заряда аккумуляторной батареи является неотъемлемой частью любой ветрогенерующей или солнечной системы. Он контролирует напряжение на батарее, переключает батареи от заряда, когда они полностью заряжены, (заряд идет на эквивалент нагрузки — балласт) и подсоединяет их, когда они достигают предварительно заданного уровня разряда. Это новая, улучшенная реализация контроллера заряда на базе цифровой микросхемы 555 серии.
Начальная реализация контроллера заряда много лет использовалась в полевых условиях, многие люди во всем мире ее повторили (этот вариант контроллера можно найти на странице самодельного ветрогенератора).
Проблема в том, что людям без опыта работы с электроникой трудно его изготовить и заставить работать (схема достаточно сложна и запутана для начинающих в электронике, кроме того были проблемы с поиском необходимых деталей). Поэтому я поставил перед собой цель значительно упростить схему контроллера заряда, сделать его, если это возможно, на одной микросхеме и уменьшить количество других компонентов. Один из моих друзей предложил мне заменить все аналоговые схемы микроконтроллером. Однако это было бы слишком сложно для желающих изготовить такой контроллер заряда.
Вот моя оригинальная схема контроллера заряда (схема 100%). Сердце схемы контроллера заряда состоит из делителя напряжения, двух компараторов и SR флип-флоп. Сначала я хотел перепроектировать его с помощью микросхемы компаратора LM339 Quad. Я некоторое время пытался эту идею реализовать, и даже сделал несколько пробных вариантов, однако возникли некоторые проблемы, вследствии чего я отложил проект на некоторое время и работал над другими вещами.
Блок-схема таймера NE555. В это время я работал над ШИМ — контроллером двигателя насоса, в котором регулятор скорости использует микросхему таймера 555 серии. Глядя на рисунок внутренней структуры микросхемы 555 серии, я был поражен тем, насколько сильно она напоминает мою оригинальную схему контроллера заряда. Вдруг я понял, что, использовав чип 555 серии, смогу перестроить схему контроллера заряда, значительно упростить ее и уменьшить количество деталей.
Сравните эти диаграммы, и вы также увидите сходство между моей оригинальной схемой контроллера заряда и структурной схемой таймера NE555. Цветные прямоугольники представляют подобные секции. Таймер 555 серии может заменить 7 компонентов в исходной схеме и намного упростить ее. Это очень нетрадиционное использование чипа 555, ведь я его не буду использовать как таймер вообще.
Для продолжения щелкните на кнопке с цифрой 2
Изготовление и тестирование обновленного контроллера заряда аккумуляторной батареи
Я приступил к работе и за очень короткое время изготовил рабочий макет. Он заработал с первой попытки, что является редкостью для меня (я почти всегда допускаюсь ошибок при реализации).
Вот показана схема нового контроллера заряда (полноразмерная схема).
Я использовал только распространенные компоненты. NE555 — это, вероятно, самая популярная микросхема в истории радиоэлектроники. Миллиарды их производились ежегодно. Транзистор может быть 2N2222, NTE123, 2N3904, или другой подобный общего назначения (небольшой NPN транзистор). MOSFET является IRF540 или аналогичный. У меня остались от других проектов много IRF540s, поэтому я использовал один из них, а не покупал то еще. Используйте то, что вы можете найти.
Все резисторы 1/8 Вт. Резисторы 1/4 Вт или выше их могут заменить, если у вас нет 1/8 Ватт резисторов. Два регулируемых резисторы, R1 и R2 (10K точные переменные резисторы), я использовал потому что уже имел их под рукой. Любые номиналы между 10K и 100K должны работать нормально, 10% допуск достаточен для всех пассивных компонентов. Схема не требует прецизионных деталей.
Обновление. Я изменил выше приведенную схему, добавив дополнительные резисторы R8 * и R9 *. Эти 330 Ом резисторы не нужны для работы схемы, но они помогут защитить ее от случайных коротких замыканий (например, когда Кнопки нажимаются). Начальная схема была намеренно минималистичной.
Реле. Я использовал автомобильные реле, рассчитанные на 40 Ампер. Их очень легко найти. Я включил реле для удобства подключения. 40 Ампер могут показаться лишними, но они позволят расшириться в будущем. Вы можете начать с одной небольшой солнечной панели, а затем добавить несколько, позже ветряк и больший банк батарей. Все остальные части указаны ниже.
Перечень деталей контроллера заряда
IC1 — 7805 — регулятор напряжения 5 Вольт
R3, R4, R5 — 1K Ом 1/8 Вт 10%
IC2 — NE555 — таймер
R6 — 330 Ом 1/8 Вт 10%
PB1, PB2 — контактные Кнопки без фиксации
R7 — 100 Ом 1/8 Вт 10%
LED1 — зеленый светодиод
Q1 — 2N2222 или похожий NPN транзистор
LED2 — желтый светодиод
Q2 — IRF540 или похожий Power MOSFET
RLY1 — 40 Amp SPDT автомобильные реле
C1 — 0.33uF 35V 10%
D1 — 1N4001 или аналогичный
С2 — 0,1 мкФ 35В 10%
R1, R2 — 10K — многооборотные потенциометры
R8 * -R9 * — дополнительные 330 Ом 1/2 W резисторы (см. текст)
Рабочий макет. Макет для испытания в полевых условиях заработал с первого раза.
Обратите внимание, я решил использовать 78L05 версию регулятора 5 Вольт в крошечном TO-92 корпусе, такого же размера, как транзистор 2N2222. Это небольшой черный прямоугольник в верхнем левом углу платы. Такое решение экономит много места на плате, позволяет обрабатывать только 100 мА, но этого достаточно для питания этой схемы. Если вы не можете найти 78L05, можно использовать в корпусе TO-220 версию 7805, которая является гораздо более распространенной (это немного увеличит плату).
Если у вас схема изготовлена, пришло время ее настраивать. Я использую 11.9V и 14.9V как нижнюю и верхнюю границу напряжения для контроллера. Это точки, где он переходит от заряда батарей к демпингу на эквивалент нагрузки, и наоборот (эквивалент нагрузки нужен в том случае, если вы используете ветряк, при работе только с солнечными батареями, линия эквивалента нагрузки может остаться открытой).
Наверное, лучший способ настроить схему — подсоединить источник питания постоянного тока к клеммам аккумулятора. Установите электропитания 11.9V. Измерьте напряжение на испытательной точке 1. Отрегулируйте R1 напряжение на контрольной точке, сделайте ее как можно ближе к 1.667V. Теперь устанавливаем 14.9V и измеряем напряжение на испытательной точке 2, регулируем R2, пока напряжение на контрольной точке будет как можно ближе к 3.333V.
Проверьте работу контроллера заряда, подав на вход напряжение несколько большее и меньшее (между 11,7 и 15,1 Вольт). Вы должны услышать, как реле закрывается около 14,9 вольт и открывается примерно в 11,9 Вольт. Кнопки PB1, PB2 могут быть использованы для изменения состояния контроллера, когда входное напряжение находится между двумя заданными точками.
Готовый контроллер заряда. После того, как контроллер был настроен, я установил его в полу-всепогодный корпус. Реле находится на левой стороне. Для проводки я использовал провод для сильно-токовых соединений (он разработан для переключения до 40 ампер). Я также включил предохранитель на входную линию с солнечной батареи / ветряка.
Вот еще одно фото контроллера заряда с крышкой. В нем мне нравится то, что я вижу светодиоды сквозь полупрозрачную крышку и с первого взгляда понятно, в каком состоянии контроллер заряда находится (удобно при тестировании).
На этой фотографии показаны все соединения с внешней стороны контроллера: есть соединение для плюса батареи, положительный вход от солнечной панели или ветрогенератора, плюс дополнительного эквивалента нагрузки (балласта) и три соединения на землю.
При подключении контроллера заряда, аккумулятор должен присоединяться первым (таким образом электроника сможет отдавать получаемую энергию). Если солнечные панели или ветрогенератор присоединить первыми, контроллер будет находиться в нестабильном состоянии.
Я должен сказать об эквиваленте нагрузки (балласте): когда контроллер заряда чувствует, что батареи (аккумулятор) полностью заряжены, он переключается на эквивалент нагрузки (просто большой внешний банк резисторов с высокой номинальной мощностью), чтобы выбрать выходную мощность ветрогенератора и держать его под нагрузкой . Если вы используете коммерчески изготовленный ветряк со встроенной защитой, или используете только солнечные батареи, то эквивалент нагрузки не нужен, и вы можете оставить эту линию не подключенной. Вы можете узнать больше о эквиваленте нагрузки (балласте) на моей странице ветряных турбин.
Вот еще один вид сбоку: кнопки зарядки и балласта. Контроллер заряда автоматически переключается между зарядом и балластом, когда напряжение батареи достигает низкого и высокого предела. Эти кнопки позволяют мне вручную переключать контроллер заряда между двумя состояниями.
Вот фото испытания нового контроллера заряда. Одна из моих самодельных 60-ваттных солнечных панелей была установлена за пределами моей мастерской и использована для зарядки в батареи глубокого цикла с помощью нового контроллера заряда. Все сработало отлично. Контроллер заряда, когда батарея была полностью заряжена, переключил на балласт.
Вот фото тестирования крупным планом. Вольтметр показывает 12,64 вольт на батарее, которая по сути является полностью заряженной. Понадобился лишь короткое время для завершения заряда солнечной батареи, и контроллер заряда переключил на балласт. Единственная проблема, которую я имел во время тестирования — трудно было увидеть в ярком солнечном свете, который из светодиодов горит.
Вот короткое видео, которое я снял во время выполнения теста, показывает, как контроллер заряда автоматически переключается с зарядки на балласт, когда превышена верхняя граница напряжения.
Схема типичной системы солнечных батарей и ветрогенераторов (полноразмерная схема). Несколько солнечных панелей и / или ветровые турбины могут быть подключены одновременно. Источники тока могут быть соединены параллельно. Каждая солнечная панель или ветрогенератор должны иметь свой собственный блокирующий диод. Здесь представлена схема типичной системы с ветровой турбиной и двумя панелями солнечных батарей, питающих контроллер заряда. Обычно преобразователь переменного тока входит в систему для питания нагрузки от переменного тока.
Люди пишут мне и спрашивают, зачем нужен контроллер заряда и аккумулятор. Почему просто не подключать солнечные панели или ветряк непосредственно к преобразователю и использовать ток, который они производят? Ну, дело в том, что солнце не всегда светит, а ветер не всегда дует, а людям энергия нужна в любое время. Батареи сохраняют ее доступной для использования, когда это необходимо.
Обновление. Мой друг Джейсон Маркхэм (Jason Markham) создал макет печатной платы для этого проекта.
Обновление. Люди спрашивают меня, может ли этот контроллер заряда использоваться с системами на 24 Вольта, и какие изменения для этого будут необходимы. Схема должна работать нормально в 24-вольтовых системах. Реле нужно будет заменить для 24В напряжения катушки, и нужно будет повторно откалибровать контроллер для новых высоких и низких пределов для более высокого напряжения батареи. Регулятор 7805 напряжения рассчитан на работу в режимах до 35 Вольт входного напряжения, поэтому в других изменениях в схеме нет необходимости.
Обновление. Стремясь создать компактную, аккуратную и портативную солнечную энергосистему, я установил контроллер заряда на верху батарейного блока. Я также установил инвертор тока на коробку — аккумуляторный ящик промышленной мощности.
Вот еще одно фото установки. Здесь включен прикуриватель для питания 12V нагрузки. Это полная солнечная электрическая система в одном небольшом (но тяжелом) пакете, нужно лишь подключить солнечную батарею.
Контроллер заряда установлен на новый батарейный блок. Мой старый банк батарей я получил почти бесплатно, но он был очень тяжелым и громоздким. Наконец я купил одну большую батарею примерно такого же размера и веса, как автомобильный аккумулятор (это дизайн глубокого цикла), она идеально подходит для солнечных / ветряных систем. Она имеет примерно такую же мощность как мой старый банк батарей, но намного меньше и легче. Это стоило около $ 200, но моя спина будет постоянно благодарить за это, ведь не нужно будет больше поднимать старый банк 14 батарей.
Обновление. Этот проект контроллера заряда на основе микросхемы 555 серии занял первое место в конкурсе Utility, категория 555 Design Contest . Yahooooo!