Контроллер заряда солнечной панели своими руками

Контроллер заряда для солнечной системы бесплатно

Дата публикации: 13 декабря 2013

Одним из важнейших компонентов солнечной системы является контроллер заряда. Он может поставляться отдельно либо в комплекте с инвертором. Как понятно из названия, это устройство предназначено для контроля заряда АКБ, то есть контроллеры заряда для солнечной батареи следят за уровнем напряжения на аккумуляторе и служат для предотвращения полного разряда или перезаряда батареи.

Век глобальной доступности, когда можно найти абсолютно любой товар и информацию, позволяет не только приобрести контроллеры в любом специализирующемся магазине, но и собрать его своими руками. Для этого Вам понадобится схема устройства, которое Вы планируете изготовить, в нашем случае – это контроллер зарядки, и умение разбираться в электронике. Попытаемся снабдить Вас и тем, и другим.

Контроллеры зарядки для СБ: краткое описание

Существует несколько разновидностей описываемого устройства. Самые простые из них выполняет лишь одну функцию: включает и выключает батареи в зависимости от их заряда. Более «продвинутые» модели снабжены функцией отслеживания точки максимального значения мощности, что обеспечивает более высокий выходной ток по сравнению с током солнечной батареи. А это, в свою очередь, повышает КПД всей установки в целом.

Более усовершенствованные модели – способны понижать напряжение на СБ и поддерживать его на требуемом уровне. Наличие данной функции способствует более полной зарядке АКБ.

Любой контроллер, в том числе и самодельный, должен отвечать определенным требованиям:

  • 1,2P ≤ I×U, где P – суммарная мощность солнечных батарей всей системы; I – выходной ток контроллера; U – напряжение системы при разряженных аккумуляторах.
  • 1,2Uвх = Uх.х, где Uвх – максимально допустимое входное напряжение, Uх.х – суммарное напряжение холостого хода всех солнечных батарей системы.

Если нет возможности купить…

Конечно, зачастую прибор, собранный своими руками, будет хуже, чем аналогичное устройство, произведенное на заводе. Но сегодня мало кому можно доверять. И дешевые контроллеры для солнечной батареи, поставляемые из Китая, также могли быть собраны в какой-нибудь подсобке. Так зачем покупать устройство, в качестве которого Вы не уверены, если есть возможность соорудить его дома.

На рисунке 1 приведена простейшая схема, воспользовавшись которой Вы сможете своими руками собрать контроллер, пригодный для зарядки свинцово-кислотного аккумулятора 12 В с помощью маломощной СБ с током в несколько ампер. Изменив номиналы используемых элементов, Вы сможете адаптировать собранный прибор под АКБ с другими техническими характеристиками. Следует отметить, что данная схема предполагает использование вместо защитного диода полевого транзистора, управляемого компаратором.

Видео Вам в помощь:

Принцип работы достаточно прост: когда напряжение на АКБ достигнет заданного значения, контроллер остановит зарядку, в случае его снижения ниже порогового значения, зарядка будет вновь включена. При напряжении меньше 11 В нагрузка будет отключаться, а при напряжении больше 12,5 В, наоборот, подключаться к аккумулятору. Этот небольшой прибор спасет Ваш аккумулятор от самопроизвольного разряда в отсутствие солнца. На рисунке 2 представлен уже собранный комплект, состоящий из двух аккумуляторов, DC/DC-конверторов и индикации.

Читайте также:  Прически женские своими руками легкие

Контроллеры заряда солнечной батареи, собранные своими руками по более сложным схемам, смогут гарантировать Вам надежную и стабильную работу. Поэтому, если Вы чувствуете в себе силы, то ниже представлена еще одна схема. Она состоит из большего числа компонентов, зато и функционирует без «глюков» (рисунок 3).

Самодельный контроллер, собранный по данной схеме, подойдет для системы энергообеспечения, работающей, как от СБ, так и от ветрогенератора. Сигнал, который приходит от используемого источника альтернативной энергии, коммутируется реле, которое в свою очередь управляется полевым транзисторным ключом. Для регулировки порогов переключения режимов используются подстроечные резисторы.

Не бойтесь экспериментировать, ведь у самых лучших умов человечества тоже случались ошибки и падения, поэтому, если с первого раза Вам не удалось собрать своими руками надежный контроллер, не отчаивайтесь. Попробуйте еще раз, и, возможно, со второго раза у Вас все получится. Зато Вас будет «греть» само осознание того, что Вы сделали его сами.

Статью подготовила Абдуллина Регина

Как доработать устройство для контроля заряда:

Источник

Как создать дешевый и эффективный контроллер заряда аккумулятора от солнечной батареи

Это автоматически включающаяся схема, которая контролирует зарядку аккумулятора от солнечных панелей и других источников питания. Она основана на интегральных схемах 555 и заряжает батарейку, когда её заряд становится ниже заданного уровня, а затем останавливает зарядку во время того, когда батарейка достигает верхнего лимита по вольтажу.

Шаг 1: Моя цель

«Создать дешевый и эффективный контроллер заряда солнечной батареи»

Шаг 2: Схема

Для сборки контроллера заряда аккумулятора от солнечной батареи своими руками понадобятся:

  • Интегральная схема NE555 IC с сокетом IC
  • Один транзистор 2N2222 или PN222a
  • Три резистора на 1K Ом
  • Один резистор на 330 Ом и один на 100 Ом
  • Два резистора на 330 Ом 1/5 w (опционально)
  • Два потенциометра на 10K
  • Два светодиода (зеленый и красный)
  • Диод 1N4007
  • Реле 5V SPDT
  • Два трехпиновых коннектора для макетной платы
  • Провода
  • Макетная плата
  • LM7805 (тип TO-220)
  • Два конденсатора(я использую на .1uF, можете использовать любой)
  • МОП-транзисторами IRF 540 (MOSFET)

На рисунке вы увидите завершенную схему контроллера . 5V реле — главный компонент схемы, это Ключ (SPDT, Single Pole Double Throw). У него одна обычная клемма и два контакта разных конфигураций. Один — обычно открыт (NO), второй — обычно закрыт (NC).

В нашем случае мы подключаем плюс солнечной панели на полюс реле (обычную клемму) и плюс батарейки на обычно открытый контакт; когда батарейка подключена к контроллеру солнечной зарядки, схема проверяет вольтаж батарейки. Если вольтаж меньше или равен обычному, то ток начинает поступать на батарейку, и она заряжается. Когда вольтаж батарейки начинает превышать верхний предел, реле активируется и ток перенаправляется в обычно закрытый контакт.

Шаг 3: Калибровка

После завершения схемы, нужно настроить нижний и верхний пороги. Калибровка батарейки нужна, чтобы предотвратить чрезмерную разрядку или зарядку. Я использую 12V в качестве нижнего предела и 14.9V в качестве верхнего. Это означает, что когда заряд батареи понижается до 12V, начинается зарядка и когда вольтаж поднимается до 14.9V, реле активируется, и схема перестает заряжать батарейку.

Чтобы настроить лимиты, вам понадобится мультиметр и два источника питания на 12V и 15V, или один универсальный. Сначала нужно установить нижний порог. Для этого установите вольтаж на 12V и подключите его к схеме. Соедините землю с мультиметром и замерьте показатель на пине 2 схемы 555. Настройте вольтаж так, чтобы получить 1.66V. Затем переключите вольтаж на 14.9V и возьмите замер на пине 6 схемы 555. Настройте вольтаж на 3.33V. Теперь контроллер готов к работе.

Читайте также:  Прически для каре без челки своими руками

Шаг 4: Соединение

Приложенная картинка показывает электрическую схему устройства. Сначала соедините плюс от солнечной панели к центральному полюсу реле, затем соедините красный провод от батарейки с NO на реле. Соедините минус от солнечной панели с минусом на схеме, а затем присоедините минус батарейки к схеме.

Шаг 5: Работа

Когда вольтаж батарейки меньше, чем 14.9V, она начинает заряжаться путём передачи тока через NO на реле. Когда вольтаж батарейки достигает 14.9 вольт, реле автоматически переключается на NC.

Шаг 6: Момент истины

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Источник

Солнечный контроллер

Приведена схема эффективного 12В зарядного устройства (солнечного контроллера), с защитой аккумуляторов от пониженного напряжения.

Характеристики устройства

Низкое потребление мощности в режиме простоя
Схема была разработана для небольших и средних свинцово-кислотных аккумуляторных батарей и потребляет маленький ток (5 мА) в режиме простоя. Это увеличивает продолжительность жизни аккумуляторных батарей.

Легкодоступные компоненты
В устройстве используются обычные компоненты (не SMD), которые легко можно найти в магазинах. Ничего не требуется прошивать, единственное нужен будет вольтметр и регулируемый источник питания для настройки схемы.

Последняя версия устройства
Это уже третья версия устройства, поэтому в нем исправлены большинство ошибок и недочетов, которые присутствовали в предыдущих версиях зарядника.

Регулировка напряжения
В приборе используется параллельный стабилизатор напряжения, чтобы напряжение аккумулятора не превышало норму, обычно это 13.8 Вольт.

Защита от пониженного напряжения
Контроллер отсоединяет аккумуляторную батарею, если напряжение падает ниже определенной точки (настраивается), обычно это 10.5 Вольт

В большинстве солнечных зарядных устройствах для защиты от утечки тока аккумулятора на солнечную панель, используется диод Шоттки. А шунтирующий стабилизатор напряжения используется когда аккумулятор полностью заряжен.
Одной из проблем такого подхода являются потери на диоде и как следствие его нагрев. К примеру, солнечная панель 100 Ватт, 12В, подает 8А на аккумуляторную батарею, на диоде Шоттки падение напряжение составит 0.4В, т.е. рассеиваемая мощность составит около 3.2 Ватта. Это во первых потери, а во вторых для диода понадобится радиатор для отвода тепла. Проблема в том, что уменьшить падение напряжения не получится, несколько диодов включенных параллельно, уменьшат ток, но падение напряжения такое и останется. В представленной ниже схеме, вместо обычных диодов используются мосфеты, следовательно мощность теряется только на активное сопротивление (резистивные потери).
Для сравнения, в 100 Вт панели при использовании мосфетов IRFZ48 (КП741А) потери мощности составляют всего 0.5Ватта (на Q2). А это значит меньший нагрев и больше энергии для аккумуляторов. Еще важным моментов является то, что мосфеты имеют положительный температурный коэффициент и могут быть включены в параллель для уменьшения сопротивления в включенном состоянии.

В приведенной выше схеме используется пара нестандартных решений.

Зарядка

Между солнечной панелью и нагрузкой не используется диод, вместо него стоит мосфет Q2. Диод в мосфете обеспечивает протекание тока от панели к нагрузке. Если на Q2 появляется значительное напряжение, то транзистор Q3 открывается, заряжается конденсатор С4, что заставляет ОУ U2c и U3b открыть мосфет Q2. Теперь, падение напряжения вычисляется по закону Ома, т.е. I*R, и оно намного меньше, чем если бы там стоял диод. Конденсатор С4 периодически разряжается через резистор R7, и Q2 закрывается. Если от панели протекает ток, то ЭДС самоиндукции дросселя L1 сразу же заставляет открыться Q3. Это происходит очень часто (множество раз за секунду). В случае, когда ток идет на солнечную панель, Q2 закрывается, а Q3 не открывается, т.к. диод D2 ограничивает ЭДС самоиндукции дросселя L1. Диод D2 может быть рассчитан на ток 1А, однако в процессе тестирования выяснилось, что такой ток возникает редко.

Читайте также:  Коллективная панно своими руками

Подстроечник VR1 устанавливает максимальное напряжение. Когда напряжение превышает 13.8В, то операционный усилитель U2d открывает мосфет Q1 и выход с панели «закорачивается» на землю. Помимо этого, операционник U3b отключает Q2 и т.о. панель отключается от нагрузки. Это необходимо, поскольку Q1 помимо солнечной панели «коротит» нагрузку и аккумулятор.

Управление N-канальными мосфетами

Для управления мосфетами Q2 и Q4 требуется большее напряжение, чем используемое в схеме. Для этого, ОУ U2 с обвязкой из диодов и конденсаторов создает повышенное напряжение VH. Это напряжение используется для питания U3, на выходе которого будет повышенное напряжение. Связка U2b и D10 обеспечивают стабильность выходного напряжения на уровне 24 Вольт. При таком напряжении, через затвор-исток транзистора будет напряжение не меньше 10В, поэтому тепловыделение будет маленькое.
Обычно, N-канальные мосфеты имеют намного меньшее сопротивление, чем Р-канальные, поэтому они и были использованы в данной схеме.

Защита от пониженного напряжения

Мосфет Q4, операционник U3a с внешней обвязкой из резисторов и конденсаторов, предназначены для защиты от пониженного напряжения. Здесь Q4 используется нестандартною. Диод мосфета обеспечивает постоянное прохождение тока в аккумулятор. Когда напряжение выше установленного минимума, то мосфет открыт, допуская небольшое падение напряжения при зарядке аккумулятора, но более важным является то, что он дает возможность прохождения тока от аккумулятора на нагрузку, если солнечная батарея не может обеспечить достаточную выходную мощность. Предохранитель защищает от возникновения короткого замыкания на стороне нагрузки.

Ниже представлены рисунки расположения элементов и печатных плат.

Настройка устройства

При нормальной использовании устройства, джампер J1 не должен быть вставлен! Светодиод D11 используется для настройки. Для настройки устройства, к выводам «нагрузка» подключите регулируемый блок питания.

Установка защиты от пониженного напряжения
Вставьте джампер J1.
В блоке питание установите выходное напряжение на 10.5В.
Вращайте подстроечный резистор VR2 против часовой стрелки до тех пор, пока не загорится светодиод D11.
Немного поверните VR2 по часовой стрелке, пока светодиод не погаснет.
Выньте джампер J1.

Установка максимального напряжения
В блоке питание установите выходное напряжение на 13.8В.
Вращайте подстроечный резистор VR1 по часовой стрелке до тех пор, пока не погаснет светодиод D9.
Медленно поверните VR1 против часовой стрелки, пока светодиод D9 не загорится.

Контроллер настроен. Не забудьте вынуть джампер J1!

Если мощность всей системы будет небольшая, то мосфеты могут быть заменены на более дешевые IRFZ34. А если система будет мощнее, то мосфеты можно заменить на более мощные IRFZ48.

Источник

Оцените статью
Своими руками