- Аккумуляторы и батареи
- Литиевые аккумуляторы для шуруповертов своими руками
- Какой Li-ion аккумулятор принять за основу
- Комплектация Li-ion аккумулятора своими руками
- Контроллер заряда Li-ion аккумулятора своими руками
- Балансир для Li-ion аккумуляторов своими руками
- Индикатор разряда Li-ion аккумулятора своими руками
- Видео
- Модули защиты и контроллеры заряд/разряд для Li-ion аккумуляторов
- Контроллеры заряда-разряда
- DW01-Plus
- S-8241 Series
- AAT8660 Series
- FS326 Series
- LV51140T
- R5421N Series
- SA57608
- LC05111CMT
- Контроллеры заряда и схемы защиты — в чем разница?
Аккумуляторы и батареи
Информационный сайт о накопителях энергии
Литиевые аккумуляторы для шуруповертов своими руками
Владельцам качественных ручных инструментов на никель-кадмиевых аккумуляторах после выработки ресурса советуем перевести прибор на литий-ионные элементы. Если есть навыки по чтению схем, пайке тонких проводов, своими руками можно сделать новую литиевую батарею из высокотоковых аккумуляторов, . Необходимо четко следовать пошаговой инструкции, как при монтаже, так и в подборе комплектующих.
Какой Li-ion аккумулятор принять за основу
Большинство из литий-ионных батарей используют аккумуляторы форм-фактор 18650. Это значит, гирлянду никель-кадмиевых элементов заменяют сборкой литий-ионных высокотоковых.
— В количестве используемых банок.
-В емкости АКБ, увеличенной более чем в 2 раза.
— В уменьшенном весе батареи.
Литий-ионные аккумуляторы можно заряжать не полным циклом, при этом емкость не становится меньше.
Сложности : стоимость нового аккумулятора для шуруповерта своими руками может потянуть на 2 тысячи. Система Ли-ион 18650 работает в узком диапазоне, как правило, 4,2 – 3,0 В. Необходимо выбрать элементы, рассчитанные на ток 20-30 ампер. Потребуется ЗУ другого типа или доработанное. Необходимо использовать защитную плату для сборки, балансир, и контроллер в ЗУ. Устройство на литиевых аккумуляторах 18620 может работать до -10 0 С, при этом сильно потеряв емкость.
Есть другие высокотоковые батарейки А123 форм-фактор 26650 серия М, активная часть состоит из литий-железо-фосфатных компонентов. Аккумуляторы выдают напряжение 3,3 В, емкость каждого 2 500 А/ч. Эти высокотоковые устройства способны обеспечить ток до 60С, работают до -30 0 С. Используется ЗУ с другими параметрами. Немаловажно, что заряжаются батареи в течение 15 минут используя ток до 10 А, безопасны, не взрываются. Рабочий диапазон 3,3 – 2,5 В.
Создавая литиевый аккумулятор для инструмента своими руками, рационально использовать элементы 18650 в АКБ шуруповертов мощностью 12 – 14,4 В для работы внутри помещения. Для техники с входным напряжением 18 вольт составить аккумулятор из элементов Nanophosphate А123 Systems, но только тайваньской сборки или от компании PowerLabs. Продаются на AliExpress, доставка бесплатная.
Рассчитать, сколько потребуется аккумуляторов для составления источника энергии нужного параметра несложно. Для этого нужно знать паспортную мощность прибора, напряжение. Чтобы разместить элементы в контейнере, возможно, потребуется убрать некоторые перегородки. Из старой гирлянды нужно аккуратно отсоединить клеммы, внедрить их в новую сборку, чтобы в последующем обеспечить контакт сборки с платформой прибора.
Комплектация Li-ion аккумулятора своими руками
Используя последовательное соединение, мы суммируем напряжения всех батареек, емкость считается по самой слабой. В параллельном соединении суммируются емкости банок, ток, а напряжение остается как на одном элементе. Чтобы удвоить емкость и получить большую разность потенциалов, нужно пары соединить параллельно, и включить их в связках в общую цепь последовательно.
Выполняя своими руками сборку Li-ion аккумуляторов, необходимо учесть, корпус банок нельзя разогревать. Нужно пользоваться точечной сваркой или очень мощным паяльником со специальным флюсом. Перемычки выполняют из толстого изолированного провода, уменьшая сопротивление, исключая нагрев. Можно воспользоваться специальной токопроводящей лентой. Соединять аккумуляторы нужно с помощью термоклея и клейкой термоленты.
Последовательное соединение работает правильно, если банки имеют равные параметры, и каждая поглощает равный заряд. Задачу решают с помощью балансиров, которые являются неотъемлемой частью схемы.
Для того, чтобы каждый элемент не получил излишний заряд и не разрядился ниже нормы, используют защитные платы на каждом элементе или общую защитную плату, рассчитанную на конкретное количество банок – 3S, 4S, 6S. Зачастую в MBS включен балансир.
Уровень заряда аккумулятора необходимо контролировать, для этого используют индикатор. Актуально знать, сколько энергии в батарее, чтобы своевременно подзарядить прибор.
Контроллер заряда Li-ion аккумулятора своими руками
Контроллер — электронная плата которая по характеристикам поддерживает рабочее напряжение и ток разряда. То есть напряжение контроллера должно отвечать характеристике прибора. Токовая нагрузка подбирается в 2 раза ниже предельной. Значит, для 18650 ток должен быть 12-15 А, для 26650 – 30-40 А.
Под контроллером заряда-разряда понимают схему защиты от слишком глубокого разряда, он же препятствует перезаряду банок выше 4,2 В. Но это только защита. Настоящий контроллер установлен в ЗУ, рассчитан на зарядку в 2 этапа с последующим отключением аккумулятора. Зарядное устройство это не блок питания. Назначение этого инструмента стабилизировать ток на первом этапе процесса, при этом выходное напряжение зависит от тока нагрузки.
В конструкции предусмотрены резисторы для регулирования выходного напряжения, индикации окончания заряда, порога ограничения выходного тока. Микросхема LM2596 выступает в виде контроллера ШИМ, компаратор LM358 поддерживает параметры тока, управляет индикацией. Стабилизатор 78L05 питает компаратор и поддерживает напряжение.
Для того, чтобы отключить аккумулятор именно в момент полного набора заряда, необходимо доработать схему. Такая доработка обусловит отключение зарядки при достижении полного заряда.
Защитная плата MBS отключит аккумулятор при достижении полного заряда. Но она срабатывает с некоторым опозданием. Поэтому батарея может получить небольшой перезаряд, сокращающий срок службы дорогого прибора.
Балансир для Li-ion аккумуляторов своими руками
При последовательном включении банок в аккумуляторе, равная энергия поступает в каждый элемент при зарядке. В идеале, напряжение на каждой банке должно быть равным. Но небольшая разница в приеме заряда есть. Самая слабая банка получит свою порцию энергии, и будет перезаряжаться, пока другие питаются. Чтобы такого не случилось, предусмотрен балансир. Чаще он встраивается в MBS, используется в комплекте. Но можно собрать своими руками микросхему балансира для литиевых аккумуляторов отдельно.
Разработаны принципиальные схемы для Li-ion и LiFePO4 аккумуляторов на основе микросхемы TL431. Особенность доработки в том, что TL431 стал выполнять функции триггера Шмитта и получился балансир, без свойственных прежним схемам недостатков.
Балансир подключается к зарядному на время операции, но собран отдельной платой.
Индикатор разряда Li-ion аккумулятора своими руками
Для удобства работы с инструментом, сигнал об уровне заряда на аккумуляторе будет нелишним. Выполнить небольшую схему создать индикатор заряда своими руками для Li-ionаккумулятора несложно. Для начала возьмите простейшую схему.
Здесь применяются: стабилитрон, транзистор и 2 светодиода, зеленый и красный. При использовании двухцветного светодиода, с падением напряжения переход от зеленого к красному будет плавным, и это поможет определить степень заряженности батареи.
Видео
Предлагаем посмотреть на видео, как сделать аккумулятор для шуруповерта своими руками.
Источник
Модули защиты и контроллеры заряд/разряд для Li-ion аккумуляторов
Для начала нужно определиться с терминологией.
Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.
При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.
Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:
И вот тоже они:
Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).
Контроллеры заряда-разряда
Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).
DW01-Plus
Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.
Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.
Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.
Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.
Вся схема выглядит примерно вот так:
Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.
S-8241 Series
Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.
Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.
AAT8660 Series
Решение от Advanced Analog Technology — AAT8660 Series.
Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).
FS326 Series
Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.
В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.
LV51140T
Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.
Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.
R5421N Series
Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).
Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:
Обозначение | Порог отключения по перезаряду, В | Гистерезис порога перезаряда, мВ | Порог отключения по переразряду, В | Порог включения перегрузки по току, мВ |
---|---|---|---|---|
R5421N111C | 4.250±0.025 | 200 | 2.50±0.013 | 200±30 |
R5421N112C | 4.350±0.025 | |||
R5421N151F | 4.250±0.025 | |||
R5421N152F | 4.350±0.025 |
SA57608
Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.
Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:
Обозначение | Порог отключения по перезаряду, В | Гистерезис порога перезаряда, мВ | Порог отключения по переразряду, В | Порог включения перегрузки по току, мВ |
---|---|---|---|---|
SA57608Y | 4.350±0.050 | 180 | 2.30±0.070 | 150±30 |
SA57608B | 4.280±0.025 | 180 | 2.30±0.058 | 75±30 |
SA57608C | 4.295±0.025 | 150 | 2.30±0.058 | 200±30 |
SA57608D | 4.350±0.050 | 180 | 2.30±0.070 | 200±30 |
SA57608E | 4.275±0.025 | 200 | 2.30±0.058 | 100±30 |
SA57608G | 4.280±0.025 | 200 | 2.30±0.058 | 100±30 |
SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).
LC05111CMT
Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.
Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.
Переходное сопротивление встроенных транзисторов составляет
11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).
Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.
Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.
Контроллеры заряда и схемы защиты — в чем разница?
Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.
Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.
По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.
Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.
Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (
4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.
Источник