Это ещё одна статья о всем известной микросхеме TP4056, многим она уже полюбилась и была протестирована неоднократно армией радиолюбителей. Да и ко мне дошли слухи о чудодейственной микросхеме. Заказал у китайцев пять подопытных, стал думать гадать, как собрать — навесом или на платке. Тут самая обычная схема — несколько деталек и сама микросхема.
Тут мне под руку попали кусочки текстолита и решил собрать на печатной плате, но не все так просто. Картридж у меня выдохнулся от пары десятков перезаправок. Встал вопрос купить новый, но цена у него заоблачная, как для меня. Тогда есть только один выход, рисовать лаком для ногтей, но лака мне больше не дают, сказали, что лак покупался не для того, чтоб я тратил его на какие-то бляшки нет, это не опечатка, какие-то бляшки — да, не ожидал.
В общем сидел я и думал чем бы себя занять, вспомнил, что платки можно рисовать не только лаком, но и парафином и маркером, парафин не для меня, я только если на Пасху яйцо раскрасить могу, и то не очень. Но с маркером идея неплоха.
Сел за руль своего двух колёсного педального байка и отправился в магазин на поиски заветного перманентного маркера. Нашёл сразу если кому интересно такой маркер стоит 6 грн. Это на 29.02.2016
Рисуем платку, мой метод такой: сделать метки канцелярской кнопкой на текстолите и соединить их маркером, как в детстве в журналах такая игра была.
Ладно, отклонился от темы, продолжаем. Травил в растворе медного купороса, могу сказать, что это наилучшее средство, я говорю конечно от своего лица — у каждого свои предпочтения, скажу лишь, что мне в нем нравится это цена, долговечность и конечно то, что он не пачкает все вокруг как хлорное железо.
Припаиваем наши деталюхи: пара SMD резисторов и два конденсатора.
Для тестирование выбрал аккумулятор с батареи ноутбука. Что-ж, заряд пошел, ну а зарядит или не зарядит — увижу утром, а сейчас спать.
Утро показало, что заряд прошел успешно, но спешил в школу и забыл сфотографировать. Всем удачи в повторении, а с вами, как всегда, был Kalyan.Super.Bos
KALYAN-SUPER-BOS — 07.03.2016 — Прочитали: 11846
УМОЩНЕНИЕ МИКРОСХЕМ-УНЧ ТРАНЗИСТОРАМИ
Увеличение мощности интегральных усилителей транзисторами. Рассматривается на примере схем LM3886 и TDA7294.
В нескольких схемах рассмотрим, можно ли параллельно включать стабилизаторы напряжения, микросхемы типа LM317 и аналогичные.
Несколько методов точного измерения емкости конденсаторов. Теория и практика.
Источник
Поделки своими руками для автолюбителей
Контроллер для зарядки АКБ своими руками, схема
Для тех, кто привык делать всё своими руками, а не покупать собранные схемы на Алиэкспрессах и тому подобное, предлагаю собрать модуль, который будет контролировать вашу зарядку аккумулятора и выключать её при завершении заряда АКБ.
Схема простая, доработанная, проверена в работе и не требует заумных настроек.
Итак вот сама схема….
Собрана она на таймере NE555, её можно заменить и на SE 555 (она работает до -55°С), так же можно поставить и SA 555 ( её работа до -40°С).
Перед подстроечными резисторами стоят ограничительные резисторы, это сделано потому, что на алиэкспрессе в отзывах много жаловались, что перегорала микросхема при выкручивание подстроечных резисторов в крайнии положения.
Защиту транзистора от индуктивных бросков тока в момент отключения реле осуществляет диод, который включен или лучше сказать «зашунтирован» с катушкой реле. Плата сделана обычным методом ЛУТ, вот ЗДЕСЬ , можно скачать для тех, кто будет повторять данную схему. Раствор делал из перекиси водорода и лимонной кислоты. готовая плата, теперь будем впаивать детали.
Собранный вид схемы, внешне мало чем отличается от китайской версии.
Вот небольшое видео работы устройства.
Источник
Контроллер заряда аккумулятора
Данный контроллер заряда подойдет для заряда аккумулятора как от ветрогенератора, так и от солнечной батареи. В схеме используется операционный усилитель TL-084, реле и небольшое количество других радиоэлектронных компонентов. Схема используется для отсоединения источника заряда от аккумулятора, после его полной зарядки. Подойдет как для 12В, так и для 24В аккумуляторов.
В схеме зарядного устройства используется 2 подстроечных резистора для установки верхнего и нижнего предела напряжения. Когда напряжение аккумулятора превышает заданное значение, то на обмотки реле подается напряжение и оно включается. Реле будет включено, пока напряжение не понизится ниже заданного уровня.
Обычно, для ветряков и солнечных батарей используются аккумуляторы 12В, тогда верхний предел напряжения устанавливается на 15В, а нижний — 12В. Источник электроэнергии (ветрогенератор, либо солнечная панель) подключаются к аккумулятору через нормально замкнутые контакты реле. Когда напряжение аккумулятора превышает заданные 15В, контроллер замыкает контакты реле, тем самым переключая источник электроэнергии с аккумулятора на нагрузочный балласт (который не рекомендуется ставить для солнечных панелей, но который обязательно нужен для ветрогенераторов).
Когда напряжение падает ниже 12В (задается подстроечным резистором), контроллер отключает реле и источник подключается к аккумулятору для его заряда.
В устройстве используется 2 светодиода, один показывает наличие питания, второй светодиод (Dump On) загорается когда аккумулятор полностью заряжен и ток протекает через нагрузочный балласт.
Настройка
Для настройки устройства вам понадобится регулируемый источник питания и вольтметр. Последовательность действий: — подстроечный резистор Low V установите на минимум (выкрутите его до конца против часовой стрелки). Подстроечный резистор High V установите на максимум (выкрутите его до конца по часовой стрелке) — подсоедините блок питания и установите на нем выходное напряжение, при котором реле будет отключать аккумулятор от источника электроэнергии. При 12В аккумуляторе, рекомендуется установить около 15В. — медленно вращайте подстроечный резистор против часовой стрелки, пока не загорится светодиод Dump On и не переключится реле. Т.о. установлен верхний предел напряжения — в регулируемом источнике питания установите нижний предел напряжения. Рекомендуется 12В. — вращайте подстроечный резистор Low V по часовой стрелке, пока не погаснет светодиод и не переключиться реле. Нижний предел установлен. — еще раз проверьте срабатывание контроллера. Настройка закончена.
Диапазон регулирования напряжения подстроечными резисторами составляет 11.5 — 18 Вольт.
Если планируется использовать 24В, то резистор R1 необходимо заменить на 22 кОм. Диапазон регулирования в таком случае будет 21 — 32 В. Катушку реле, также необходимо будет подобрать на 24В.
Источник
Модули защиты и контроллеры заряд/разряд для Li-ion аккумуляторов
Для начала нужно определиться с терминологией.
Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.
При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.
Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:
И вот тоже они:
Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).
Контроллеры заряда-разряда
Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).
DW01-Plus
Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.
Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.
Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.
Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.
Вся схема выглядит примерно вот так:
Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.
S-8241 Series
Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.
Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.
AAT8660 Series
Решение от Advanced Analog Technology — AAT8660 Series.
Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).
FS326 Series
Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.
В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.
LV51140T
Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.
Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.
R5421N Series
Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).
Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:
Обозначение
Порог отключения по перезаряду, В
Гистерезис порога перезаряда, мВ
Порог отключения по переразряду, В
Порог включения перегрузки по току, мВ
R5421N111C
4.250±0.025
200
2.50±0.013
200±30
R5421N112C
4.350±0.025
R5421N151F
4.250±0.025
R5421N152F
4.350±0.025
SA57608
Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.
Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:
Обозначение
Порог отключения по перезаряду, В
Гистерезис порога перезаряда, мВ
Порог отключения по переразряду, В
Порог включения перегрузки по току, мВ
SA57608Y
4.350±0.050
180
2.30±0.070
150±30
SA57608B
4.280±0.025
180
2.30±0.058
75±30
SA57608C
4.295±0.025
150
2.30±0.058
200±30
SA57608D
4.350±0.050
180
2.30±0.070
200±30
SA57608E
4.275±0.025
200
2.30±0.058
100±30
SA57608G
4.280±0.025
200
2.30±0.058
100±30
SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).
LC05111CMT
Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.
Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.
Переходное сопротивление встроенных транзисторов составляет
11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).
Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.
Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.
Контроллеры заряда и схемы защиты — в чем разница?
Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.
Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.
По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.
Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.
Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (
4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.