Контроллер для заряда аккумулятора своими руками

Поделки своими руками для автолюбителей

Контроллер для зарядки АКБ своими руками, схема

Для тех, кто привык делать всё своими руками, а не покупать собранные схемы на Алиэкспрессах и тому подобное, предлагаю собрать модуль, который будет контролировать вашу зарядку аккумулятора и выключать её при завершении заряда АКБ.

Схема простая, доработанная, проверена в работе и не требует заумных настроек.

Итак вот сама схема….

Собрана она на таймере NE555, её можно заменить и на SE 555 (она работает до -55°С), так же можно поставить и SA 555 ( её работа до -40°С).

Перед подстроечными резисторами стоят ограничительные резисторы, это сделано потому, что на алиэкспрессе в отзывах много жаловались, что перегорала микросхема при выкручивание подстроечных резисторов в крайнии положения.

Защиту транзистора от индуктивных бросков тока в момент отключения реле осуществляет диод, который включен или лучше сказать «зашунтирован» с катушкой реле. Плата сделана обычным методом ЛУТ, вот ЗДЕСЬ , можно скачать для тех, кто будет повторять данную схему. Раствор делал из перекиси водорода и лимонной кислоты. готовая плата, теперь будем впаивать детали.

Собранный вид схемы, внешне мало чем отличается от китайской версии.

Вот небольшое видео работы устройства.

Источник

Как сделать контроллер заряда аккумулятора своими руками

Пост опубликован: 8 ноября, 2019

Контролер заряда – это электронное техническое устройство предназначенное для управления работой гелио установки в заданном режиме.

Данный процесс выражается в контролировании режима заряд-разряд аккумуляторной батареи, а также управлении работой солнечных батарей и подключения нагрузки в соответствии с оптимальными параметрами использования накопленной энергии.

Наличие контроллера заряда в составе оборудования солнечной электрической станции позволяет ее использовать в автоматическом режиме

Контроллер заряда солнечной батареи своими руками

В специализированных компаниях, а также торговых сетях занимающихся электронным оборудованием можно приобрести контроллеры заряда, выпускаемые различными компаниями производителями, как отечественными, так и зарубежными.

Подобное оборудование стоит достаточно дорого, поэтому для снижения стоимости гелио установки и сокращения сроков ее окупаемости, подобное устройство можно собрать своими руками.

В этом случае, конечно же, необходимо уметь пользоваться паяльником и иметь хотя бы начальные знания касающиеся электронных устройств и способах их монтажа.

О том, как сделать контроллер заряда для солнечной батареи своими руками мы расскажем в настоящей статье нашего проекта.

Схема контроллера заряда

Существует множество схем подобного оборудования, различающихся по степени сложности изготовления и техническим возможностям готового изделия после его сборки.

Конкретную схему каждый пользователь выбирает для себя сам, ориентируясь на свой опыт работы с электронными изделиями и умением их собирать самостоятельно.

На ниже следующем рисунке приведена схема контроллера, о сборке которого будет рассказано далее.

Конструктивная схема контроллера заряда аккумуляторной батареи на основе двух микросхем

Комплектующие для самодельного контроллера управления работой солнечной батареи

Для сборки контроллера по выше приведенной схеме потребуются следующие комплектующие, а именно:

  • Микросхемы — LM385-2.5 (2 шт.);
  • Конденсаторы – емкостью 100 пф (2 штуки) и 1000 пф (1 штука);
  • Диоды — SB540 (1 штука) или аналогичный с рабочим током равным максимальному току, вырабатываемому солнечной батареей, а также диод Шотки;
  • Транзисторы — BUZ11, BC548, BC556;
  • Резисторы — R1 – 1k5, R2 – 100k, R3 – 68k, R4 и R5 – 10k, R6 – 220k, R7 – 100k, R8 – 92k, R9 – 10k, R10 – 92k.
  • Светодиодный индикатор – 1 штука.

Принципиальная схема контроллера заряда на основе двух микросхем типа LM385-2.5

Важно! Данная схема рассчитана на работу с одной солнечной батареей, способной вырабатывать максимальный ток 4,0 Ампера и аккумулятором, емкость которого составляет 3000 А/час.

При необходимости комплектующие можно заменить, а также усовершенствовать данную схему, если появиться такая необходимость.

Читайте также:  Печка лежанка своими руками чертежи

Вот некоторые советы по замене комплектующих:

  1. Если заменить микросхемы, то следует менять и конденсатор С2 (его емкость должна соответствовать новым характеристикам микросхем).
  2. При невозможности приобрести резисторы сопротивлением 92К (R8 и R10 на схеме), их следует заменить на два подключаемых последовательно, сопротивлениями 82 и 10 К.

К сведению! При использовании солнечных панелей, максимальный ток которых более 4,0 А, необходимо использовать более мощные транзисторы и диоды, чем указанных в рассматриваемой схеме.

Принцип работы собираемой схемы

В темное время суток, когда солнечная батарея не вырабатывает электрический ток, контроллер находиться в режиме ожидания (спящий режим).

При попадании солнечных лучей на фотоэлектрические элементы гелио установки, начинается вырабатываться электрический ток, и при достижении напряжения, равного 10,0 В контроллер включается в работу (электрический ток подается на клеммы аккумулятора).

Когда напряжение станет равным 14,0 В, включается в работу усилитель U1 и зарядка прекращается (в это время разряжается конденсатор С2).

После разрядки конденсатора напряжение падает и закрывается мощный транзистор (VT3 на схеме) и зарядка АКБ возобновляется.

Разнообразие моделей готовых контроллеров заряда позволяет выбрать нужную по техническим характеристикам и в заданном ценовом диапазоне

Сборка контроллера заряда аккумулятора

Для того, чтобы было удобно использовать собираемую конструкцию, необходимо подобрать корпус, в котором будет размещена плата с установленными на нее электронными составляющими и изготовить саму эту плату.

В магазинах группы «Сделай САМ» можно приобрести специальные заготовки для изготовления печатных плат, представляющие собой диэлектрик (стеклотекстолит) в виде пластины, на который нанесен слой меди или иного токопроводящего материала.

Изготовление печатной платы осуществляется в следующей последовательности:

  1. На бумаге рисуется шаблон, соответствующий схеме, предполагаемой к размещению на печатной плате. На шаблоне прорисовываются дорожки между элементами схемы, а также места установки этих элементов.
  2. Подбирается заготовка печатной платы нужного размера (если необходимо, то излишки обрезаются при помощи ножовки по металлу).
  3. Шаблон приклеивается при помощи клея «Момент» на подготовленную заготовку.
  4. В местах крепления элементов схемы просверливаются отверстия (сверло диаметром 0,7 – 0,8 мм).
  5. Шаблон удаляется, а на заготовке платы, между просверленными отверстиями, прорисовываются дорожки связи (для этого используется краска стойкая к водным растворам).
  6. Когда дорожки и места пайки электронных составляющих прорисованы, можно приступать к травлению платы.

Важно! Перед нанесением краски на поверхность печатной платы ее следует обезжирить при помощи бензина, ацетона или простого моющего средства.

К сведению! Травление, в домашних условиях, можно выполнить с помощью перекиси водорода или раствором хлорного железа.

Травление осуществляется следующим образом, а именно:

  • В специальную емкость, стойкую к воздействиям химических веществ (стекло, эмалированная посуда и т.д.) наливается подготовленный раствор;
  • Затем в раствор погружается печатная плата с нанесенным на него рисунком.
  • Когда токопроводящий слой, в местах, где отсутствует краска, раствориться, плата достается из раствора, после чего обливается проточной водой;
  • После этого заготовка вытирается насухо и с ее поверхности удаляется краска, обозначающая электрические дорожки (используется наждачная бумага).

Когда краска будет удалена, печатная плата готова к размещению электронных элементов схемы.

Внешняя печатная плата изготовленная своими руками

В соответствии с выбранной схемой и шаблоном размещения комплектующих, выполняется впаивание элементов конструкции, в местах где просверлены монтажные отверстия.

Готовая плата помещается в подготовленный корпус, на котором монтируются места вывода контактов к источнику электрического тока (солнечная батарея) и накопительному элементу гелио системы (аккумуляторная батарея).

Проверятся работоспособность собранной схемы, и выполняется установка собранного контроллера в выбранном месте размещения.

Отличительные особенности МРРТ и ШИМ контроллеров и как это отражается при изготовлении их своими руками

Отличительной особенностью МРРТ моделей, является высокий КПД. Работа подобных приборов основана на поиске максимальной точки мощности, определяемой на соотношении силы тока и напряжения на источнике электрической энергии (солнечная батарея).

ШИМ устройства – это более дешевые приборы, работающие по принципу широтно-импульсной модуляции.

Читайте также:  Обновляем компьютерное кресло своими руками

При изготовлении подобных устройств своими руками наиболее просто изготовить ШИМ-прибор, но для использования в автоматическом режиме все-таки лучше МРРТ аналоги, об одном из которых было рассказано выше.

Достоинствами подобных устройств являются:

  • Универсальность использования (гелио и комбинированные системы, ветровые генераторы).
  • Возможность создания оптимальных условий для заряда АКБ, даже при низкой освещенности, что увеличивает срок их эксплуатации;
  • Высокий КПД использования.

Недостатки тоже есть, их можно сформулировать следующим образом:

  • Высокая стоимость у готовых изделий;
  • Сложность при изготовлении своими руками, обусловленная технологией обеспечивающей работу устройства.

В заключение хочется отметить, что даже сложные приборы можно изготовить самостоятельно в домашних условиях, используя электронные комплектующие заводского производства, а главными условиями успеха в этом деле, будет желание и умение работать своими руками.

Спасибо, что дочитали до конца! Не забывайте подписываться на канал, Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:

и предлагайте темы для обсуждений, вместе будет интереснее.

Источник

Модули защиты и контроллеры заряд/разряд для Li-ion аккумуляторов

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

Решение от Advanced Analog Technology — AAT8660 Series.

Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).

FS326 Series

Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.

В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.

Читайте также:  Массажный салон своими руками

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
R5421N111C 4.250±0.025 200 2.50±0.013 200±30
R5421N112C 4.350±0.025
R5421N151F 4.250±0.025
R5421N152F 4.350±0.025

SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
SA57608Y 4.350±0.050 180 2.30±0.070 150±30
SA57608B 4.280±0.025 180 2.30±0.058 75±30
SA57608C 4.295±0.025 150 2.30±0.058 200±30
SA57608D 4.350±0.050 180 2.30±0.070 200±30
SA57608E 4.275±0.025 200 2.30±0.058 100±30
SA57608G 4.280±0.025 200 2.30±0.058 100±30

SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.

Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет

11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (

4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.

Источник

Оцените статью
Своими руками