- Проект за пару дней: большой дисплей из светодиодных лент
- Что нам понадобится
- Расчеты
- Матирование стекла
- Крепление светодиодных лент
- Пайка
- Фиксация лент
- Проверка подключения
- Помещаем в рамку
- Glediator
- Библиотеки Adafruit NeoMatrix и Adafruit GFX
- Собрать мониторный контроллер StudioVolume (1 онлайн
- sunet
- Сенсорный монитор своими руками
- Сенсорная панель и контроллер
- Комплект поставки
- Выбор монитора для модернизации
- Подготовка к переделке
- Процесс модернизации
- Подключение
- Установка драйверов, калибровка
- Работа в приложениях
- Себестоимость сенсорного монитора
- Выводы
- Недостатки
- Достоинства
Проект за пару дней: большой дисплей из светодиодных лент
Полгода назад мы дополнили наш почти традиционный офисный каток 7,6 тыс. светодиодами, чтобы транслировать изображения и видео прямо на поверхность льда. На гиктаймсе был опубликован пост, в котором рассказывалось о том, что подо льдом скрывается самый настоящий гигантский дисплей разрешением 120х63 «пикселей», на который можно выводить достаточно сложные и яркие изображения.
Часто нам задавали вопрос: можно ли своими руками сделать нечто подобное дома? Можно, почему нет? Про лед был подробный рассказ (вот история о первом катке — захватывающее чтиво в июльскую жару), а вот о способах превращения светодиодов в большой дисплей практически не упоминали. Так как наши мейкеры люди занятые и предпочитают говорить о чем-то новом, а не пережевывать прошлое, публикация этой статьи откладывалась снова и снова. В конечном счете мы решили перевести для вас понятный и наглядный туториал, после которого можно будет взять и повесить дисплей себе на стену.
Итак, выдохните, все будет просто. Бóльшая часть времени уйдет на сборку — придется немного покорпеть над соединением лент друг с другом. Они должны быть спаяны в последовательную цепь на задней стороне панели. Для рассеивания света защитное стекло будет матированным.
Главный вопрос проекта — какое ПО использовать? Здесь все зависит от ваших потребностей: мы начнем с демокода и указателей, а в одной из следующих статей рассмотрим, как выводить на дисплей уведомления и котировки акций.
Что нам понадобится
- 10 м светодиодной ленты (продается в катушках по 5 м). Я использовал дешевый вариант — WS2812B. Если же вам хочется получить более высокое разрешение дисплея, можете приобрести ленту с плотностью 60 светодиодов/метр;
- блок питания на 5 В и 10 А. Я использовал модель, у которой входное питание до 240 В подается на винтовые зажимы. Если вам нужно сделать дисплей более безопасным, выберите полностью закрытый блок питания;
- Arduino UNO;
- большое количество отрезков толстого провода. Я отрезал пучок от старого компьютерного блока питания;
- фоторамка 50х50 см;
- матирующий спрей и белая краска.
Общие затраты у меня получились меньше $100.
Также вам понадобятся инструменты:
- паяльник с припоем;
- клеевой пистолет;
- нож или ножницы;
- инструмент для снятия изоляции.
Сначала прочитайте пособие по работе с электроникой для начинающих!
Расчеты
Если вы приобрели рамку 50х50 см и такие же светодиодные ленты, как у меня, то сможете уместить в дисплей 15 отрезков по 15 светодиодов. Но ничто не мешает использовать рамку другого размера. Расстояние между светодиодами — около 30 мм, таким образом на один пиксель приходится примерно 30 мм 2 . Это наш 1DPI. Ну да, разрешение не как у Retina.
Рассчитайте, сколько отрезков ленты вам понадобится, и расчертите направляющие с обратной стороны панели. Семь раз проверьте, один раз отрежьте: у меня ленты немного различаются, потому что когда я начал их приклеивать, то обнаружил, что могу вместить только 14 отрезков по 15 светодиодов. Но это не страшно — в приложении можно легко настроить разное количество рядов пикселей и их длину. Отрежьте куски, подходящие для вашей рамки. К сожалению, я обнаружил, что у меня 15-е светодиоды в отрезках приходятся как раз на то место, где нужно припаивать соединительные провода. Поэтому пришлось их выпаивать.
Матирование стекла
Для лучшего рассеивания света я решил нанести на обе стороны стекла матирующий спрей. Делать это лучше на улице или на балконе, так как спрей вреден для здоровья. Наносить его необходимо как можно более равномерно. После высыхания матирование получается очень устойчивым, но изначально необходимо добиться равномерного покрытия без каких-либо царапин.
Также задуйте белой краской панель, которая будет видна сквозь стекло. Отрежьте один из углов — здесь пройдут провода.
Крепление светодиодных лент
Для приклеивания лент к панели используйте суперклей. Я пробовал двусторонний скотч, но через несколько недель он отвалился. Клеевой пистолет еще хуже, ведь обе поверхности — панель и обратная сторона ленты — гладкие и не имеют пор. Если вы приобрели светодиодные ленты в резиновом корпусе, то не сильно переживайте относительно точности размещения — их можно свободно двигать.
Помните, что сигнал будет проходить через всю цепь, и у каждой ленты есть направление передачи сигнала. Ленты нужно размещать так: у одной стрелка (направление сигнала) указывает направо, у следующей — налево, потом опять направо и т.д. То есть сигнал по дисплею будет идти «змейкой». Проверьте еще раз правильность размещения лент, прежде чем клеить их!
Пайка
Для соединения лент требуется по три провода разной длины. Внутреннюю пару контактов соединяем самым коротким проводом (на фото — красный), для средней пары берем провод подлиннее, а к внешним контактам припаиваем самый длинный. В зависимости от того, какие ленты в данный момент соединяются, внутренние контакты будут либо питанием (+5V), либо заземлением (GND).
Прежде чем припаивать провода, залудите их и сами контакты на лентах. На это уйдет больше всего времени, но это крайне важный момент. Не торопитесь, дважды проверьте правильность соединяемых контактов!
Фиксация лент
После возни с подключением проводов вы можете обнаружить, что первая лента сдвинулась. Эту проблему я решил следующим образом: просверлил два маленьких отверстия и зафиксировал ленту стяжкой. Если у вас не было под рукой достаточно сильного клея, то таким образом можно дополнительно зафиксировать все ленты с обоих концов.
Проверка подключения
Шестой пин Arduino используется для передачи управляющего сигнала; напряжение питания должно подаваться напрямую от блока питания. Подключите заземление между лентами, Arduino и блоком питания. Не пытайтесь запитать ленты от Arduino, а также не подключайте блок питания к Arduino при подключенном USB (когда будет загружаться код для тестирования).
Скачайте и добавьте в соответствующую папку библиотеку AdafruitNeoPixel, затем запустите Arduino. Протестируйте подключение с помощью следующего кода, указав в первом параметре количество светодиодов (в нашем примере — 60):
Adafruit_NeoPixel strip =Adafruit_NeoPixel(60, PIN, NEO_GRB + NEO_KHZ800);
Если анимация остановится на каком-то ряду, сразу отключите всю конструкцию и проверьте подключение. Возможные причины сбоя:
- неправильное направление ленты;
- вы спутали контакты при соединении лент;
- вы припаяли +5V к GND.
Помещаем в рамку
Поскольку рамка не была рассчитана на такую глубину размещения панели, мне пришлось сначала зафиксировать стекло клеевым пистолетом, а затем по периметру вставить резиновый уплотнитель, работающий буфером между стеклом и панелью со светодиодами. После завершающего тестирования помещаем панель в рамку и фиксируем ее клеевым пистолетом. В углу можно проделать небольшое отверстие для вывода проводов. Все, техническая сторона проекта завершена.
Можете еще подумать над тем, возможно ли спрятать в рамке еще и блок питания с Arduino. А пока переходим к настройке ПО.
Glediator
Программа Glediator компании SolderLab.de очень хорошо подходит для анимирования светодиодных матриц на вечеринках или в ночных клубах. Она способна управлять матрицей, состоящей из 512 светодиодов WS2812/NeoPixels, формируя до 24 кадров/сек — этого вполне достаточно для нашего дисплея, можно даже выводить на него простенькие анимационные гифы. Микшер позволит делать плавные переходы между анимациями.
Для работы с Glediator установите на Arduino UNO прошивку, и проверьте, чтобы сигнальный кабель был подключен к пину 6. Не забудьте прописать в переменной количество используемых вами светодиодов.
Запустите Glediator, откройте свойства и измените размер матрицы и режим вывода. Настройте порядок пикселей, если у вас используется другая схема, но по этому шагу мало документации, поэтому придется действовать методом проб и ошибок. Если изображение на дисплее отличается от задуманного, попробуйте поиграть с настройками. У меня работал порядок пикселей HS_BL — подозреваю, что это означает «horizontalsnake, startingbottomleft» (горизонтальная змейка, начало слева внизу).
Glediator — профессиональное приложение, не будем пока изучать его интерфейс и возможности. Загрузите в левое и правое окна разные анимации, затем двигайте микшер между ними. Или используйте готовый плейлист, который показан в видеоролике.
Библиотеки Adafruit NeoMatrix и Adafruit GFX
Компания Adafruit создала очень полезную библиотеку для работы со светодиодными матрицами. Сначала она называлась Adafruit GFX, и изначально предназначалась для TFT- и LCD-дисплеев. Затем появилась модификация NeoMatrix, позволяющая полноценно работать с матрицами NeoPixel. Она имеет огромное количество простых в использовании функций по выводу текста или растровой спрайтовой графики.
Если вы в точности повторили мой проект, то можете воспользоваться этим кодом. Самая важная часть:
С первыми строками все понятно. В последних трех описывается схема матрицы: в данном случае первый пиксель находится слева внизу (bottomleft), пиксели расположены рядами (rows), соединенными зигзагообразно (zigzag). Если вы сделали иначе, то обратитесь к документации библиотеки.
Я задал в коде несколько спрайтов — смайлы. Вы можете создать собственные с помощью Java-приложения Img2Code, лежащего в папке библиотеки GFX.
В будущем мы рассмотрим использование библиотеки для вывода полезной информации вроде котировок акций или ленты Twitter, а пока предлагаю вам самостоятельно поиграть с кодом и загрузить собственные изображения.
На этом все. Вы создали большой дисплей из светодиодных лент. Теперь нужно придумать, как его использовать. Из оставшихся светодиодов можете создать лампу в виде облачка.
Источник
Собрать мониторный контроллер StudioVolume (1 онлайн
sunet
Victor Buruiana, 1959
Итак для начала нового раздела я решил описать для повторения мой прибор Sunet Studio Volume. Это простейший мониторный контроллер который я сделал в колличестве 10 шт. и не неамерен пока больше производить по двум причинам:
1. Выбранная мною конструкция оказалась слишком трудоемкой при разумной цене на подобный прибор
2. Большинство клиентов хотят иметь и усилители для наушников в составе прибора, т.е. прибор Sunet StudioMaster.
Так что предлагаю желающим изготовить себе контроллер StudioVolume самостоятельно, в любом подходящем корпусе, желательно стальном, но в принципе можно и аллюминиевом. Еще можно спаять корпус из фольгированного стеклотекстолита.
Назначение – прибор предназначен для переключения 2-х источников сигнала, подключения 2-х пар мониторов, регулировки громкости мониторов и перевода прослушивания в режим МОНО для слуховой проверки на моносовместимость. Входы и выходы прибора несимметричные. Основные приемущества прибора – простота и дешевизна, а значит его широкая доступность для повторения и полная пассивность, т.е. минимально возможное влияние на прослушиваемый сигнал.
Схема прибора представлена на рисунке, внешний вид на фото. В составе прибора 6 гнезд типа TRS (Jack) – 3 для входов и 3 для выходов, 4 переключателя (тумблера), сдвоенный потенциометр и два постоянных резистора, монтаж навесной. Гнезда Х1, Х2 предназначены для подключения левого и правого каналов основного источника сигнала, гнездо Х3 – для подключения дополнительного источника сигнала стереофоническим кабелем. Переключателем S1 выбирается источник сигнала.
Далее сигнал поступает на сумматор МОНО собранный на резисторах R1 и R2 и переключателе S2. При замыкании переключателя сигнал переходит в режим МОНО.
После переключателя S2 сигнал поступает на потенциометр регулятора громкости с характеристикой регулировки типа «В» по советской маркировке или «А» по западной и далее на два переключателя S3 и S4. Первый включает левый и правый выходы первой пары мониторов – разъемы X4, X5 типа TRS, второй – выход X6 для подключения стереокабалем альтернативной пары компьютерных мониторов.
Прибор в наладке не нуждается. Если у вас нет необходимости в альтернативном входе, разъем Х3 и переключатель S1 можно исключить. Второй вход мною был сделан стереофоническим (на одном гнезде) в целях экономии места, но если корпус позволяет, лучше установить два гнезда – одно для левого и второе для правого каналов. Аналогично и для выходов – чаще всего компьютерные громкоговорители имеют в качестве входного стереокабель типа миниджек, но при необходимости можно использовать два разъема TRS или RCA. При выключении выходы мониторов замыкаются на общий провод для обеспечения полной тишины. Второй выход может быть также использован для подключения сабвуфера. Если корпус будет иметь в верхней части ушки, то его удобно будет крепить к столешнице как показано на фото. В моем варианте корпуса боковые стенки можно было переставлять с шагом в 90 градусов, что давало 4 варианта расположения ушек и тем самым 4 варианта крепления корпуса. В любом случае рекомендую снабдить корпус ушками в любом желаемом месте, ибо прибор имеет малые размеры и вес и без крепления к столу пользоваться им неудобно.
Источник
Сенсорный монитор своими руками
В последнее время во многих голливудских фантастических фильмах стали появляться причудливые устройства, которыми герои картины управляют посредством собственных рук. Например:
За рубежом сенсорные технологии уже вовсю используются в различных продуктах, например таких как: информационные сенсорные киоски, торговые терминалы, автомобильные мультимедийные системы, планшетные ПК, КПК и другие устройства.
Эта технология распространена и в России, я не имею в виду наладонные компьютеры, которые продаются на территории нашей страны. Скорость её распространения, по всей видимости, ограничена высокой розничной стоимостью готовых продуктов.
В настоящее время в этой области работает около десятка компаний, у одной из них мне удалось заполучить на тест — «сенсорный набор». Возможно ли сделать сенсорный монитор своими руками, который обладал бы еще и низкой стоимостью? Прочитав этот обзор Вы с уверенностью скажете «Да».
Сенсорная панель и контроллер
Сенсорная панель, которая была предоставлена на тест, выпускается тайваньской компанией Apex Material Technology Corporation (AMT), одним из самых крупных азиатских производителей сенсорных компонентов. Головной офис и производственные мощности AMT расположены в Тайпее на Тайване (Taipei, Taiwan).
Существует несколько типов сенсорных панелей — резистивные, емкостные, инфракрасные и экраны на поверхностных акустических волнах. AMT9102 относится к классу аналоговых резистивных сенсорных экранов. Но и резистивные панели бывают, многослойными и 4/5/8 проводными, данная модель — двухслойная четырех — проводная.
Технические характеристики AMT9102:
- Размеры панели: 332,6 x 257,5 мм;
- Толщина панели: 3,3 мм;
- Активная область: 304,1 x 228,1 мм;
- Толщина чувствительного слоя: 0,188 мм;
Электротехническая спецификация:
- Сопротивление участка цепи (отжато): 10 МОм;
- Сопротивление участка цепи (нажато): 2 КОм;
Время отклика на нажатие:
- 10 мс;
Сопротивление слоя:
- Аналоговое: 200
800 Ом/м2;
- Рабочее напряжение: 5В;
- Рабочая температура: от -10°C до 60°C;
- Температура хранения: от -20°C до 80°C;
- Влажность: не более 90%;
- Сила нажатия стилусом или пальцем: от 10 до 80 граммов;
- Плотность поверхности: 3H;
- Долговечность: 10 млн. точечных нажатий;
- Прозрачность: 80%.
Резистивная технология основывается на методе замера электрического сопротивления части системы в момент прикосновения. Для определения координат X и Y используются специальные чувствительные слои, между которыми находится еще один, «нейтральный».
Когда верхний слой соприкасается с нижним, электрическая цепь замыкается и контроллер получает информацию о координатах X и Y с верхнего и нижнего слоев соответственно. Для того, чтобы контроллер мог отличать сигналы, токи верхнего слоя текут в перпендикулярном направлении по отношение к нижнему. По сравнению с другими типами «точ-скринов», резистивный обладает высокой разрешающей способностью (300 точек/дюйм), большим ресурсом (10 млн. касаний), небольшим временем отклика (около 10 мс) и низкой стоимостью. Но помимо плюсов есть и минусы, например такие, как 20% потеря светового потока.
Контроллер был взят того же производителя — PenMount 9026. Модель 9026 совместима с четырех и восьми проводными конструкциями. Контроллер предназначен для установки внутри корпуса монитора и имеет RS-232 интерфейс подключения.
Технические характеристики PenMount 9026:
- Интерфейс подключения: RS-232;
- Plug & Play: полная поддержка;
- Максимальное разрешение: 1024 x 1024 пикселей;
- Скорость передачи сигнала до порта: 19,200 бод;
- Потребляемая мощность: от 5В до 12В;
- Индикаторы: встроенный в контроллер LED;
- Габаритные размеры: длина 65 мм x ширина 25 мм x толщина 2,5 мм.
Комплект поставки
Сенсорная панель обтянута защитной пленкой и упакована в пакет, в котором еще можно обнаружить восемь самоклеющихся полосок разной длинны. На этом о комплекте поставки AMT9102 можно закончить.
Контроллер PenMount 9026 также запакован в целлофан и поставляется вместе с интерфейсными кабелями и компакт-диском с драйверами и программным обеспечением.
Выбор монитора для модернизации
Мы имеем 15″ сенсорную панель, следующий шаг заключается в выборе подходящего монитора. Установить сенсорный экран можно далеко не в каждый дисплей, если с CRT монитором все более или менее понятно, то подходящий LCD придется поискать, а мы будем имплантировать «точ-скрин» именно в ЖК — монитор.
Первоначально планировалось использовать одну из двух 15″ моделей — Philips 150B2B или EIZO FlexScan L355. Дело в том, что эти мониторы имеют встроенный блок питания и очень ограниченное свободное пространство, что свойственно многим фирменным дисплеям. Поэтому установить контроллер и панель, в данном случае, практически невозможно.
Как показала практика, для установки AMT9102 необходимо около 5 мм расстояния между лицевой панелью и LCD матрицей монитора. Почему 5 мм, если толщина сенсорного экрана 3,3 мм, спросите вы. Для соединения «точ-скрина» с ЖК матрицей используются специальные демпферные самоклеющиеся прокладки, толщина которых 0,85 мм. Вот из всего этого и получается дополнительные 5 мм.
После неудачной попытки интегрировать сенсорный экран в Philips 150B2B и EIZO FlexScan L355, было принято решение искать монитор с внешним блоком питания. Такой дисплей долго искать не пришлось так, как на компьютерном рынке полно моделей от «noname» производителей.
Выбор пал на 15″ LCD от неизвестного производителя, который продается под названием «SoCool», что в прямом переводе означает «Так Круто». Посмотрим, действительно ли он так хорош.
В SoCool применяется 15,1″ ЖК панель CHUNGHWA CLAA150XH01 толщиной всего 6 мм, а платы монтируются на заднюю стенку монитора, поэтому места оказалось предостаточно.
Подготовка к переделке
Прежде чем приступить к модернизации монитора, подготовьте рабочее место. Главное чтобы на поверхности, куда вы положите панель и матрицу, не было острых выступов, которые могли бы их поцарапать.
Кроме этого подготовьте чистую тряпочку, на случай если на экране появятся разводы от пальцев. Из инструментов понадобятся — надфиль с круглым профилем, ножовка по металлу и острый нож, на случай если потребуется резать корпус. Также запаситесь терпением и будьте готовы потратить 2-3 часа свободного времени.
Процесс модернизации
Ну что, приступим? Если все готово, то начнем. Сперва осторожно снимем лицевую панель и отложим её в сторону. Пока наше внимание сосредоточено на ЖК экране. Отпустив четыре крепежных винта, демонстрируем панель и убираем оставшуюся часть монитора в сторону.
Смахните пыль и уберите посторонние вещи с рабочей места перед тем, как начнется работа по объединению «точ-скрина» с LCD панелью. Первым делом тщательно протрите поверхность ЖК матрицы и убедитесь в отсутствии пыли и прочей грязи на ней.
Как уже было отмечено выше, в комплект сенсорной панели входят специальные самоклеящиеся демпферные полоски. Вначале их следует наклеить по периметру экрана, естественно к металлической окантовке панели.
Удалив упаковочную пленку с сенсорной панели, устанавливаем «точ-скрин» на ЖК матрицу, самое главное не перепутайте рабочую сторону панели (ориентируйтесь по надписи в правом верхнем углу), она должна смотреть вверх. После, отложите блок матрица + сенсорная панель в сторону. Далее, следует доработать матрицы.
LCD панель крепится к четырем угловым кронштейнам. С помощью надфиля необходимо углубить паз на 5 мм и уменьшить соответственно высоту кронштейна на эти же 5 мм, отпилив верхнюю часть ножовкой.
При установке контроллера PenMount 9026 помните об интерфейсных кабелях. Если в задней крышке монитора нет подходящего отверстия, проделайте новое, только когда подключите шнур к контроллеру не забудь его укрепить, например, так, как показано на фотографии или просто завяжите небольшой узел.
В печатной плате контроллера имеется два отверстия для винтов. В моем случае хватило одного. Размеры PenMount 9026 составляют всего 65 x 25 мм (длина x ширина), поэтому поиск места для него не вызвал проблем и он успешно был монтирован на заднюю стенку монитора.
Необходимо также не забыть приклеить демпферные полоски с тыльной стороны лицевой крышки монитора. Процесс переделки подходит к завершению.
Подключаем разъемы ЖК матрицы, предварительно состыковав сенсорную панель с контроллером. Выравнив по уровню экран, закрываем лицевую панель монитора. Вуаля, сенсорный монитор готов!
Подключение
Контроллер подключается к компьютеру через RS-232 интерфейс или попросту через COM порт. Существуют и USB модификации. Для PenMount 9026 еще требуется дополнительное питание от PS/2 порта.
Если разъем PS/2 занят клавиатурой или мышью, можно воспользоваться «двойником», то есть подключить контроллер к компьютеру, а мышь или клавиатуру к соответствующему кабелю контроллера. После этой простой манипуляции можно приступать к установке драйверов и калибровке панели.
Установка драйверов, калибровка
При запуске ОС происходит автоматическое определение нового устройства. На запрос об установке следует ответить отказом. Их следует устанавливать с прилагаемого компакт-диска, так как драйверы входят в программный комплекс PenMount. Система, на которую инсталлировались драйверы и ПО, работает под управлением ОС Windows XP SP2.
В системе, контроллер с панелью обозначаются, как PenMount DMC9000 and DMC9100. Хочу заметить, что представленные драйверы поддерживают практически все известные ОС, такие как DOS, Windows 3.11, Windows 95, Windows 98, Windows ME, Windows NT, Windows XP, Windows CE, Linux и Qnx, а вот MacOS остался, почему то в стороне.
После перезагрузки компьютера, в панели задач появилась иконка с изображенными буквами «pm» на синем фоне — PenMount Monitor. Через «монитор» можно выбрать некоторые опции, а также вызвать панель управления — PenMount Control Panel.
Все настройки и регулировки можно производить только через Control Panel. Первая вкладка панели управления — калибровка (Calibrate), где можно выбрать режим настройки, но об этом, подробнее, будет чуть позже. Вкладка рисование (Draw) служит для проверки работы панели. Закладка Multiple Monitors позволяет включить поддержку нескольких панелей.
В опциях (Option) можно выбрать либо точечный, либо непрерывный режимы. Существует возможность дублировать каждое прикосновение к сенсорной панели звуковым сигналом, частота и длительность которого регулируется в этом же пункте меню. На момент написания статьи, использовались последняя версия драйверов 4.01 и «прошивка» контроллера версии A1.30.
Оставим описание программного обеспечения в покое и перейдем к настройке сенсорного монитора. Лучше всего не полениться и произвести калибровку «точ-скрина» по 16 точкам в режиме расширенной настройки (Advanced Calibration).
На белом фоне появится небольшая окружность с красной точкой внутри, после нажатия на одну появляется другая, такая же, только в другом месте. Нажимать лучше именно в центр, в красную точку. Для точности я использовал зубочистку, но можно воспользоваться и собственным пальцем.
Работа в приложениях
В Windows XP управлять прикосновением пальца удобно, благодаря большим виртуальным кнопкам и надписям. Чувствительность сенсорного экрана высокая, поэтому давить на него особо не надо.
Нареканий при работе в системных и офисных приложениях, нет. Зато есть проблемы в некоторых графических программах.
Интересно было посмотреть, как сенсорный дисплей выступит в роли графического ЖК планшета. Оказалось, не очень хорошо. Например, в Adobe Photoshop 8.0 CS и 7.0 сигнал с «точ-панели» воспринимался программой неправильно. Такая же история и в Corel Draw 10.
Зато в Paint и Corel Xara рисовать можно, как карандашом на бумаге. Если разобраться с проблемой возникающей в Photoshop и Corel, сенсорный дисплей можно использовать в качестве графического планшета. Скорее всего, причина таится в драйвере.
Себестоимость сенсорного монитора
Если вы все-таки решитесь заняться переделкой монитора в сенсорный, предлагаю для начала ознакомится со стоимостью компонентов.
- Сенсорная панель AMT9102 — 120 долларов
- Контроллер AMT PenMount 9026 — 60 долларов
- LCD монитор SoCool — 280 долларов
Итого получается 460 долларов. Это ощутимо дешевле уже готового монитора с «точ-скрином» подобного класса. Как видите сенсорные технологии вполне доступны.
Выводы
Мой эксперимент, на который я возлагал надежды, увенчался успехом. Теперь можно с уверенностью сказать, что создать недорогой сенсорный монитор, практически ничем не уступающий брендам, можно! Области применения такого монитора различны и обусловлены его функциональностью. Дисплей может быть использован в создании различных выставочных стендов, в качестве монитора какого-либо торгового терминала, при оформлении музейных композиций, в качестве монитора персонального компьютера для людей с физическими недостатками или с ограниченными двигательными возможностями.
Как видите, сенсорные технологии становятся все ближе и доступнее. И, наконец, это движение начинает получать популярность в нашей стране. Сенсорный монитор это всего лишь один из видов альтернативных средств ввода-вывода информации, а ведь существуют еще и такие мощные комплексы, как информационные киоски. О них мы, возможно, поговорим чуть позже.
Недостатки
- отсутствие антибликового покрытия;
- большая толщина панели;
- проблемы при рисовании в Photoshop 8.0 CS и Corel Draw 10.
Достоинства
- относительно низкая себестоимость переделки;
- наличие драйверов под все распространенные операционные системы;
- простота модернизации.
Сенсорную панель AMT9102 и контроллер PenMount 9026 на тестирование были представлены компанией ГИДРОЭР.
Источник