- Охладитель для самогонного аппарата своими руками
- Характеристики змеевика
- Материалы для змеевиков
- Нержавеющая сталь
- Стекло
- Силиконовая трубка
- Охладитель для самогонного аппарата
- Как сделать охладитель для самогонного аппарата
- Что надо для изготовления змеевика
- Как завить змеевик
- Вертикальный кожухотрубный дефлегматор или холодильник
- Принцип работы кожухотрубных теплообменников и сфера их применения
- Расчет параметров кожухотрубного дефлегматора
- Конструктивные особенности кожухотрубного теплообменника
- Перегородки
- Трубки
- Расчет параметров кожухотрубного холодильника
- Чертежи кожухотрубных дефлегматоров и холодильников
- Послесловие
Охладитель для самогонного аппарата своими руками
Самым важным элементом самогонного аппарата является змеевик. К его изготовлению необходимо подходить очень ответственно, ведь именно здесь происходит священный процесс выделения спирта из спиртосодержащего пара. И если перегонный куб может быть, в принципе, любым, главное, чтобы герметичным, то змеевик выбрать или сделать не так то просто.
В змеевике, который именуют «холодильником Грэхема», происходит конденсация спиртосодержащих паров с последующим разделением на парообразную и жидкую фракции, после чего сконденсировавшийся самогон отводится наружу. Конденсация осуществляется за счет отвода охлаждения стенок змеевика водой, а в некоторых случаях воздухом. При охлаждении самогонных паров они распадаются на пар и самогон, при этом последний, стекая по змеевику, выходит в приемочную емкость.
От того, насколько грамотно и корректно изготовлен змеевик, зависит производительность самогонного аппарата и качество готового продукта.
Характеристики змеевика
Для того, чтобы увеличивать производительность самогонного аппарата, необходимо обеспечить соблюдение определенных геометрических характеристик змеевика, а именно:
длина – чем больше этот показатель, тем выше гидравлическое сопротивление и больше площадь поверхности, контактирующая с водой.
Речь идет именно о длине трубки, из которой изготавливается змеевик, а не о длине уже скрученного змеевика.
Считается, что небольшая толщина стенки змеевика увеличивает коэффициент теплоотдачи и повышает производительность аппарата. На самом деле, теплопроводность практически не зависит от толщины стенки, так как срабатывает слоевой эффект. На границе пара и воды происходит резкое снижение температуры и, как следствие, увеличивается количество конденсата.
Показатель теплопроводности нетоксичных материалов:
Материал
Теплопроводность,
Вт/м·К
Цена,
у.е. за кг
* — змеевик из стекла продается в уже готовом виде и цена его зависит от количества витков. Минимальный на 10 витков обойдется в 1000, на 24 витка – от 1800 рублей.
Советуем почитать: самый эффективный самогонный аппарат своими руками
Наиболее оптимальным по цене и теплопроводности является медный змеевик. К тому же, с медью легко работать, такую трубку завить не составит труда даже без предварительного нагрева.
Материалы для змеевиков
Важным преимуществом медного змеевика является его химическая инертность по отношению к спирту. Надо понимать, что не сам материал инертен, но то, что он не вступает в реакцию ни с собственно спиртом, ни со спиртосодержащими парами.
За время эксплуатации на медной трубке появляется едва заметный налет оксида меди, который попадает в уже готовый продукт. Но его количество настолько незначительно, что невозможно даже его отследить, не говоря уже об анализе теоретического вреда здоровью.
Нержавеющая сталь
Этот материал ввиду стойкости к коррозии, позволяет получать максимально чистый продукт. При этом сталь сложно самостоятельно завить так, как требуется. Для того, чтобы сделать необходимое количество витков, понадобится радиальный шаблон или трубогиб в случае его отсутствия, и газовая горелка. Из недостатков – гораздо меньшая теплопроводность, чем у меди, и более существенный вес.
Как можно согнуть трубу без трубогиба – видео совет от мастеров
Стекло
Несмотря на то, что стеклянные змеевики используются лишь в единичных случаях, многих интересует вопрос о целесообразности использования такого материала. Действительно, стекло на выходе дает абсолютно чистый продукт. НО! Его подготовить можно только в специальной мастерской, сложно соединить с другими элементами самогонного аппарата и такой змеевик очень хрупкий.
Силиконовая трубка
Неплохая альтернатива для змеевика, которая также сопровождается определенными минусами и плюсами. Из плюсов следует выделить простоту в обработке и невысокую цену. Это нейтральный материал, не вступающий в реакцию со спиртом, не коррозирующий и оттого не передающий никаких посторонних веществ в готовый продукт. Из минусов – сложно зафиксировать форму, приходится использовать проволочный каркас и невысокая теплопроводность. По сравнению с тем же медным змеевиком, при силиконовом производительность самогонного аппарата снижается на 25%.
Охладитель для самогонного аппарата
Устройство любого самогонного аппарата включает 3 обязательных элемента:
Между собой агрегаты связаны системой шлангов, по которым отводиться и подводиться вода, а также обрабатываются самогонные пары.
Холодильник представляет собой емкость накопительного или проточного типа, куда помещен змеевик. В холодильнике постоянно присутствует вода, которая охлаждает стенки змеевика, тем самым провоцируя выделение конденсата (самогона) и стекание его в приемочную емкость.
Для самогонного аппарата качественный змеевик значит все – именно от него зависит производительность агрегата и количество самогона.
Как сделать охладитель для самогонного аппарата
Теперь уже понятно, что основная задача змеевика – мгновенное охлаждение выделяющиеся при кипении браги паров и преобразование их в самогон. Чем более контактным и теплопроводным будет змеевик, тем большее количество самогона за определенную единицу времени будет получено.
Основа змеевика – труба из выбранного материала. Ранее мы уже говорили о том, что по показателям гибкости, теплопроводности и цены наиболее подходящим является медь. Ее и будем брать для изготовления охладителя своими руками.
Для змеевика могут подойти и другие материалы –серебро, латунь, нержавеющая сталь, алюминий и стекло. Доступными из этого перечня являются алюминий и нержавеющая сталь, но и тот, и другой можно обработать только в специальных условиях и на станке.
Что надо для изготовления змеевика
Исходный материал – трубка диаметров 1-1,2 см с толщиной стенки 1-1,1 мм и длиной порядка 1,5 метров.
Если для изготовления змеевика выбрана медь, следует понимать, что периодически его надо будет чистить от налета оксида. Это черный налет, который появляется в результате контакта с воздухом и серой. Для чистки можно использовать соду или лимонную кислоту. Разводите столовую ложку того или другого вещества в литре теплой воды и замачиваете змеевик в зависимости от степени загрязнения на 2-8 часов. После вытаскиваете и отмываете мягкой губкой весь налет.
Как завить змеевик
Чтобы трубка не прогнулась и не сплющилась, ее следует наполнить обычным песком, забив с одной стороны деревянную заглушку.
Ставите трубку вертикально и аккуратно засыпаете песок, регулярно постукивая трубкой об стол, чтобы песок утрамбовался. Когда трубка наполнена, с другой стороны также закрываете заглушкой, чтобы песок не стал высыпаться, когда будете завивать его.
Используйте для основы любую трубу подходящего диаметра и зафиксируйте ее в тисках в вертикальном положении. Накручивайте медную трубу вокруг основы так, чтобы между витками был шаг в 0,5 см и они между собой не соприкасались.
Далее змеевик погружается в холодильник, соединяется штуцерами с входной и выходной стороны и запускается в работу.
Как сделать охладитель для самогонного аппарата своими руками – видео
Источник
Вертикальный кожухотрубный дефлегматор или холодильник
Самый распространенный в промышленности тип теплообменника – кожухотрубник. Вариант его конструктивного исполнения зависит от задач, стоящих перед пользователями. Кожухотрубник не обязательно должен быть многотрубным – обычный рубашечный дефлегматор, прямоточный (а) или противоточный (б) холодильник типа «труба в трубе» — это тоже кожухотрубники.
Применяются и одноходовые теплообменники с перекрестноточным движением теплоносителей (в). Но наиболее эффективна и часто используемая для многотрубных теплообменников – многоходовая перекрестноточная схема (г).
При этой схеме один поток жидкости или пара движется по трубам, а навстречу ему зигзагообразно, многократно пересекая трубы, движется второй теплоноситель. Это гибрид противоточного и перекрестного вариантов, который позволяет сделать теплообменник максимально компактным и эффективным.
Принцип работы кожухотрубных теплообменников и сфера их применения
В самогоноварении многоходовые перекрестноточные холодильники принято называть кожухотрубниками (КХТ), а их однотрубный вариант – противо- или прямоточным холодильником. Соответственно, при использовании этих конструкций в качестве дефлегматоров — кожухотрубными и рубашечными дефлегматорами.
В домашних самогонных аппаратах, бражных и ректификационных колоннах подачу пара осуществляют в эти теплообменники по внутренним трубам, а охлаждающей воды – в кожух. Любого промышленного конструктора-теплотехника это бы возмутило, так как именно в трубах можно создать высокую скорость теплоносителя, значительно увеличив теплоотдачу и КПД установки. Однако у винокуров свои цели и не всегда нужен высокий КПД.
Например, в дефлегматорах для паровых колонн, наоборот, требуется смягчить градиент температур, размазать зону конденсации как можно больше по высоте, и, сконденсировав необходимую часть пара, не допустить переохлаждения флегмы. Да еще и точно регулировать этот процесс. На первый план выходят совсем другие критерии.
Среди применяемых в самогоноварении холодильников наибольшее распространение получили змеевики, прямоточники и кожухотрубники. Каждый из них имеет свою сферу использования.
Для аппаратов с низкой (до 1,5-2 л/час) производительностью наиболее рационально применение небольших проточных змеевиков. При отсутствии проточной воды змеевики тоже дают фору другим вариантам. Классический вариант – змеевик в ведре с водой. Если есть водопровод и производительность аппарата до 6-8 л/ч, то преимущество имеют прямоточники, сконструированные по принципу «труба в трубе», но с очень малым кольцевым зазором (около 1-1,5 мм). На паровую трубу спиралевидно навивают проволоку с шагом 2-3 см, которая центрирует паровую трубу и удлиняет путь охлаждающей воды. При мощностях нагрева до 4-5 кВт это самый экономичный вариант. Кожухотрубник, безусловно, может заменить прямоточник, но стоимость изготовления и расход воды будет повыше.
Кожухотрубник выступает на первый план при автономных системах охлаждения, поскольку совершенно нетребователен к давлению воды. Как правило, обычного аквариумного насоса хватает для успешной работы. Кроме того, при мощностях нагрева от 5-6 кВт и выше кожухотрубный холодильник становится практически безальтернативным вариантом, так как длина прямоточного холодильника для утилизации высоких мощностей будет нерациональной.
Кожухотрубный дефлегматор
Для дефлегматоров бражных колонн ситуация несколько иная. При малых, до 28-30 мм, диаметрах колонн наиболее рационален обычный рубашечник (в принципе тот же кожухотрубник).
Для диаметров 40-60 мм лидером становится дефлегматор Димрота. Это высокоточный охладитель с четкой регулируемостью мощностью и абсолютной несклонностью к завоздушиванию. Димрот позволяет настроить режимы с наименьшим переохлаждением флегмы. При работе с насадочными колоннами он, благодаря своей конструкции, дает возможность центрировать возврат флегмы, наилучшим образом орошая насадку.
Кожухотрубник выходит на передний план при системах автономного охлаждения. Орошение насадки флегмой происходит не в центре колонны, а по всей плоскости. Это менее эффективно чем у Димрота, но вполне допустимо. Расход воды при таком режиме у кожухотрубника будет ощутимо выше нежели у Димрота.
Если нужен конденсатор для колонны с жидкостным отбором, то Димрот вне конкуренции за счет точности регулировки и малого переохлаждения флегмы. Кожухотрубник также применяют для этих целей, но переохлаждения флегмы трудно избежать и расход воды будет выше.
Основной причиной популярности кожухотрубников у производителей бытовых аппаратов является то, что они более универсальны в использовании, а их детали легко унифицируются. Кроме того, применение кожухотрубных дефлегматоров в аппаратах типа «конструктор» или «перевертыш» вне конкуренции.
Расчет параметров кожухотрубного дефлегматора
Расчет необходимой площади теплообмена можно выполнить по упрощенной методике.
1. Определить коэффициент теплопередачи.
Наименование | Толщина слоя h, м | Удельная теплопроводность |
λ, Вт/(м*К)
R, (м 2 К)/Вт
Вт/(м 2 К)
Формулы для расчетов:
Rs = R1 + R2 + R3 + R4, (м2 К)/ Вт;
К = 1 / Rs, Вт/ (м2 К).
2. Определить среднюю разницу температур между паром и охлаждающей водой.
Температура насыщенного спиртового пара Тп = 78,15 °C.
Максимальная мощность от дефлегматора нужна в режиме работы колонны на себя, что сопровождается максимальной подачей воды и минимальной её температурой на выходе. Поэтому примем, что температура воды на входе в кожухотрубник (15 — 20) — Т1 = 20 °C, на выходе (25 — 40) — Т2 = 30 °C.
Среднюю температуру (Тср) посчитаем по формуле:
Тср = (Твх — Твых) / Ln (Твх / Твых).
То есть, в нашем случае округленно:
Тср = (58 — 48) / Ln (58 / 48) = 10 / Ln(1,21) = 53 °C.
3. Рассчитать площадь теплообмена. Исходя из известного коэффициента теплопередачи (К) и средней температуры (Тср), определяем необходимую площадь поверхности для теплообмена (Sт) для требуемой тепловой мощности (N), Вт.
Sт = N / (Tср * К), м 2 ;
Если нам, к примеру, нужно утилизировать 1800 Вт, то Sт = 1800 / (53 * 1493) = 0,0227 м 2 , или 227 см 2 .
4. Геометрический расчет. Определимся с минимальным диаметром трубок. В дефлегматоре флегма идет навстречу пару, поэтому необходимо соблюсти условия для её свободного стекания в насадку без излишнего переохлаждения. Если сделать трубки слишком малого диаметра, можно спровоцировать захлеб или выброс флегмы в зону над дефлегматором и дальше в отбор, тогда о хорошей очистке от примесей можно будет просто забыть.
Минимальное суммарное сечение трубок при заданной мощности посчитаем по формуле:
Sсеч = N * 750 / V, мм 2 , где
N – мощность (кВт);
750 – парообразование (см 3 / с кВт);
V – скорость пара (м/с);
Sсеч – минимальная площадь поперечного сечения трубок (мм 2 )
При расчетах дистилляторов колонного типа мощность нагрева выбирают исходя из максимальной скорости пара в колонне 1-2 м/с. Считается, что если скорость превысит 3 м/с, то пар будет гнать флегму вверх по колонне и забрасывать в отбор.
Если нужно утилизировать в дефлегматоре 1,8 кВт:
Sсеч = 1,8 * 750 / 3 = 450 мм 2 .
Если делать дефлегматор с 3 трубками, значит, площадь сечения одной трубки не меньше 450 / 3 = 150 мм 2 , внутренний диаметр – 13,8 мм. Ближайший больший из стандартных размеров труб – 16 х 1 мм (внутренний диаметр 14 мм).
При известном диаметре труб d (см) находим минимально необходимую их суммарную длину:
L= 227/ (3,14* 1,6) = 45 см.
Если сделаем 3 трубки, то длина дефлегматора должна быть около 15 см.
Длину корректируют учитывая, что расстояние между перегородками должно примерно равняться внутреннему радиусу корпуса. Если число перегородок будет четным, то патрубки для подачи и слива воды окажутся на противоположных сторонах, а если нечетным – на одной стороне дефлегматора.
Увеличение или уменьшение длины труб в пределах величины радиуса бытовых колонн не создаст проблем с управляемостью или мощностью дефлегматора, так как соответствует погрешностям при расчете и может быть компенсировано дальнейшими конструктивными решениями. Можно рассмотреть варианты с 3, 5, 7 и более трубками, затем выбрать со своей точки зрения оптимальный.
Конструктивные особенности кожухотрубного теплообменника
Перегородки
Расстояние между перегородками ориентировочно равно радиусу корпуса. Чем меньше это расстояние, тем больше скорость потока и меньше возможность возникновения застойных зон.
Перегородки направляют поток поперек трубок, это ощутимо увеличивает КПД и мощность теплообменника. Также перегородки препятствуют прогибу трубок под воздействием тепловых нагрузок и увеличивают жесткость кожухотрубного дефлегматора.
В перегородках вырезают сегменты для прохода воды. Сегменты должны быть не меньше площади сечения патрубков для подачи воды. Обычно эта величина составляет около 25-30% от площади перегородки. В любом случае, сегменты должны обеспечить равенство скорости воды по всей траектории движения, как в трубном пучке, так и зазоре между пучком и корпусом.
Для дефлегматора, несмотря на его небольшую (150-200 мм) длину, есть смысл сделать несколько перегородок. Если их число будет четным, штуцеры окажутся на противоположных сторонах, если нечетным – на одной стороне дефлегматора.
При установке поперечных перегородок важно обеспечить как можно меньший зазор между корпусом и перегородкой.
Трубки
Толщина стенок трубок особого значения не имеет. Разность коэффициента теплопередачи для толщины стенки 0,5 и 1,5 мм ничтожно мала. По факту трубки являются термически прозрачными. Выбор между медью и нержавейкой, с точки зрения теплопроводности, также теряет смысл. При выборе нужно исходить из эксплуатационных или технологических свойств.
При разметке трубной доски руководствуются тем, что расстояния между осями трубок должно быть одинаковым. Обычно их размещают в вершинах и по сторонам правильного треугольника или шестиугольника. По этим схемам при одном и том же шаге возможно разместить максимальное количество трубок. Центральная трубка чаще всего становится проблемной, если расстояния между трубками в пучке не одинаковы.
На рисунке показан пример правильного расположения отверстий.
Для удобства сварки расстояние между трубками не стоит делать меньше 3 мм. Для обеспечения прочности соединений материал трубной решетки должен быть более твердым, чем материал труб, а зазор между решеткой и трубами – не более 1,5% от диаметра труб.
При сварке концы труб должны выступать над решеткой на расстояние равное толщине стенки. В наших примерах – на 1 мм, это позволит сделать качественный шов, оплавив трубу.
Расчет параметров кожухотрубного холодильника
Главное отличие кожухотрубного холодильника от дефлегматора состоит в том, что флегма в холодильнике течет в одном направлении с паром, поэтому слой флегмы в зоне конденсации увеличивается от минимального до максимального более плавно, а средняя его толщина несколько больше.
Для расчетов рекомендуем задавать толщину, равную 0,8 мм. В дефлегматоре же все наоборот – вначале толстый слой флегмы, слившейся со всей поверхности, встречает пар и практически не дает ему полноценно конденсироваться. Затем, преодолев этот барьер, пар попадает в зону с минимальной, порядка 0,5 мм толщиной, пленки флегмы. Это толщина на уровне её динамического удержания, конденсация происходит, в основном, в этой зоне.
Приняв среднюю толщину слоя флегмы равной 0,8 мм, на конкретном примере рассмотрим особенности расчета параметров кожухотрубного холодильника по упрощенной методике.
Наименование | Толщина слоя h, м | Удельная теплопроводность |
λ, Вт/(м*К)
R, (м 2 К)/Вт
Вт/(м 2 К)
Максимальные требования по мощности к холодильнику предъявляет первая перегонка, для которой и делают расчет. Полезная мощность нагрева – 4,5 кВт. Температура воды на входе – 20 °C, на выходе – 30 °C, пара – 92 °C.
Твх = 92 — 20 = 72 °C;
Твых = 92 — 30 = 62 °C;
Тср = (72 — 62)/ Ln (72 / 62) = 67 °C.
Sт = 4500 / (67 * 855,6) = 787 см².
Минимальная суммарная площадь сечения труб:
S сеч = 4.5*750/10= 338 мм²;
Выбираем 7-ми трубный холодильник. Площадь сечения одной трубы: 338 / 7 = 48 мм или внутренний диаметр 8 мм. Из стандартного ассортимента труб подходит 10х1 мм (с внутренним диаметром 8 мм).
Внимание! При расчете длины холодильника нужен внешний диаметр – 10 мм.
Определяем длину трубок холодильника:
L= 787 / 3,14 / 1 = 250 см, следовательно, длина одной трубки: 250 / 7 = 36 см.
Проводим уточнение длинны: если корпус холодильника выполнен из трубы с внутренним диаметром 50 мм, то между перегородками должно быть 25 мм.
Следовательно, можно сделать 14 перегородок и получить патрубки ввода-вывода воды в разные стороны, или 15 перегородок и патрубки будут смотреть в одну сторону, также слегка подрастет мощность. Выбираем 15 перегородок и корректируем длину трубок до 37,5 мм.
Чертежи кожухотрубных дефлегматоров и холодильников
Производители не спешат делиться своими чертежами кожухотрубных теплообменников, а домашние мастера не особо в них нуждаются, но всё же некоторые схемы есть в публичном доступе.
Послесловие
Не следует забывать, что всё вышесказанное – теоретический расчет по упрощенной методике. Теплотехнические расчеты намного сложней, но в реальном бытовом диапазоне изменения мощностей нагрева и других параметров методика дает корректные результаты.
На практике коэффициент теплопередачи может оказаться другим. Например, из-за повышенной шероховатости внутренней поверхности труб слой флегмы станет выше расчетного, или холодильник будет расположен не вертикально, а под углом, что изменит его характеристики. Вариантов много.
Расчет позволяет достаточно точно определить размеры теплообменника, проверить как повлияет на характеристики изменение диаметра труб и без лишних затрат отвергнуть все негодные или гарантированно худшие варианты.
Источник