Автоматический определитель электронных компонентов, больше известный как транзистортестер Маркуса.
Автор: vlad465 Опубликовано 30.10.2016 Создано при помощи КотоРед. Участник Конкурса «Поздравь Кота по-человечески 2016!»
В эти дни уважаемые форумчане поздравляют свой любимый сайт с очередным днем рождения.
11 лет — серьезный возраст и для Котов, и для сайта, хочется присоединиться к этому торжеству, пожелать дальнейшего развития и представить вашему вниманию очень интересное и несложное устройство, которое позволит определить какая деталь к нему подключена и измерить сопротивление, ёмкость, индуктивность и другие параметры практически любого элемента за несколько секунд.
Разработал это устройство Маркус Фрейек (финальная версия проекта на немецком — https://www.mikrocontroller.net/articles/AVR-Transistortester), позже доработки от Карл-Хайнц Куббелер (https://www.mikrocontroller.net/articles/AVR_Transistortester).
Сейчас существует множество клонов этого прибора на различных дисплеях, с немного различной функциональностью и качеством измерений.
Несмотря на то, что этот проект позиционируется как тестер транзисторов, не менее интересна его способность быстро измерять многочисленные двухвыводные компоненты, но конструктивное исполнение в виде настольного прибора мне показалось не очень удобным для измерений двухвыводных деталей, тем более если это SMD, и было решено выполнить прибор в виде измерительного пинцета.
Изначально прибор был реализован на LCD индикаторе 1602 небольшого размера, а затем на графическом OLED дисплее, который дает некоторые преимущества, как маленькая толщина и вес, большая контрастность, возможность одновременного отображения большего количества информации.
Этот вариант исполнения прибора и хочу вам предоставить.
Устройство имеет небольшие габариты, несложно для повторения, с хорошей точностью измеряет большинство радиоэлементов:
— Однопереходные и программируемые однопереходные транзисторы
ТЕСТЕР ПОЛУПРОВОДНИКОВЫХ РАДИОЭЛЕМЕНТОВ НА МИКРОКОНТРОЛЛЕРЕ
Хочу поделится очень полезной для каждого радиолюбителя схемой, найденной на просторах интернета и успешно повторенную. Это действительно очень нужный прибор, имеющий много функций и собранный на основе недорогого микроконтроллера ATmega8. Деталей минимум, поэтому при наличии готового программатора собирается за вечер.
Данный тестер с высокой точностью определяет номера и типы выводов транзистора, тиристора, диода и т.д. Будет очень полезен как начинающему радиолюбителю, так и профессионалам.
Особенно незаменим он в тех случаях, когда имеются запасы транзисторов с полустёртой маркировкой, или если не получается найти даташит на какой-нибудь редкий китайский транзистор. Схема на рисунке, кликните для увеличения или скачайте архив:
Типы тестируемых радиоэлементов
Имя элемента — Индикация на дисплее:
— NPN транзисторы — на дисплее «NPN» — PNP транзисторы — на дисплее «PNP» — N-канальные-обогащенные MOSFET — на дисплее «N-E-MOS» — P-канальные-обогащенные MOSFET — на дисплее «P-E-MOS» — N-канальные-обедненные MOSFET — на дисплее «N-D-MOS» — P-канальные-обедненные MOSFET — на дисплее «P-D-MOS» — N-канальные JFET — на дисплее «N-JFET» — P-канальные JFET — на дисплее «P-JFET» — Тиристоры — на дисплее «Tyrystor» — Симисторы — на дисплее «Triak» — Диоды — на дисплее «Diode» — Двухкатодные сборки диодов — на дисплее «Double diode CK» — Двуханодные сборки диодов — на дисплее «Double diode CA» — Два последовательно соединенных диода — на дисплее «2 diode series» — Диоды симметричные — на дисплее «Diode symmetric» — Резисторы — диапазон от 0,5 К до 500К [K] — Конденсаторы — диапазон от 0,2nF до 1000uF [nF, uF]
Описание дополнительных параметров измерения:
— H21e (коэффициент усиления по току) — диапазон до 10000 — (1-2-3) — порядок подключенных выводов элемента — Наличие элементов защиты — диода — «Символ диода» — Прямое напряжение – Uf [mV] — Напряжение открытия (для MOSFET) — Vt [mV] — Емкость затвора (для MOSFET) — C= [nF]
В списке приводится вариант отображения информации для английской прошивки. На момент написания статьи появилась русская прошивка, с которой всё стало гораздо понятнее. Скачать файлы для программирования контроллера ATmega8 можно тут.
Сама конструкция получается довольно компактной — примерно с пачку сигарет. Питание от батареи «крона» на 9В. Потребляемый ток 10-20мА.
Для удобства подключения испытуемых деталей, надо подобрать подходящий универсальный разъём. А лучше несколько — для различных типов радиодеталей.
Кстати, у многих радиолюбителей часто возникают проблемы с проверкой полевых транзисторов, в том числе с изолированным затвором. Имея данное устройство, вы сможете за пару секунд узнать и его цоколёвку, и работоспособность, и ёмкость перехода, и даже наличие встроенного защитного диода.
Планарные smd транзисторы тоже с трудом поддаются расшифровке. А многие радиодетали для поверхностного монтажа иногда не удаётся даже примерно определению — или то диод, или что ещё.
Что касается обычных резисторов, то и тут налицо превосходство нашего тестера над обычными омметрами, входящими в состав цифровых мультиметров DT. Здесь реализовано автоматическое переключение необходимого диапазона измерения.
Это касается и проверки конденсаторов — пикофарады, нанофарады, микрофарады. Просто подключите радиодеталь к гнёздам прибора и нажмите кнопку TEST — на экране сразу отобразится вся основная информация о элементе.
Готовый тестер можно разместить в любом небольшом пластмассовом корпусе. Устройство собрано и успешно испытано.
Форум по обсуждению материала ТЕСТЕР ПОЛУПРОВОДНИКОВЫХ РАДИОЭЛЕМЕНТОВ НА МИКРОКОНТРОЛЛЕРЕ
Самодельный светодиодный драйвер для фотосъёмки с возможностью переключения цветовой температуры.
Медицинские устройства для контроля параметров здоровья человека. Примеры современных микросхем снятия и обработки сигналов тела.
Обсудим действующие стандарты радиосвязи, узнаем чем они отличаются, и когда использовать какие из них.
Источник
Универсальный тестер радиокомпонентов
Измеритель ESR R/C/L и тестер полупроводников
Любому, кто работает с электроникой, требуется тестер радиоэлектронных компонентов. В большинстве случаев электронщики всех мастей обходятся цифровым мультиметром. Им можно проверить с достаточной точностью самые частоиспользуемые электронные компоненты: диоды, биполярные транзисторы, конденсаторы, резисторы и пр.
Но, среди радиодеталей есть и такие, проверить которые рядовым мультиметром сложно, а порой и невозможно. К таким можно отнести полевые транзисторы (как MOSFET, так и J-FET). Также, обычный мультиметр не всегда имеет функцию замера ёмкости конденсаторов, в том числе и электролитических. И даже если таковая функция имеется, то прибор, как правило, не измеряет ещё один очень важный параметр электролитических конденсаторов – эквивалентное последовательное сопротивление (ЭПС или ESR).
С недавнего времени стали доступны по цене универсальные измерители R, C, L и ESR. Многие из них обладают возможностью проверки практически всех ходовых радиодеталей.
Давайте узнаем, какими возможностями обладает такой тестер. На фото универсальный тестер R, C, L и ESR — MTester V2.07 (QS2015-T4). Он же LCR T4 Tester. Приобрёл я его на Алиэкспресс. Не удивляйтесь, что прибор без корпуса, с ним он стоит куда дороже. Вот здесь вариант без корпуса, а вот здесь с корпусом.
Тестер радиодеталей собран на микроконтроллере Atmega328p. Также на печатной плате имеются SMD-транзисторы с маркировкой J6 (биполярный S9014), M6 (S9015), интегральный стабилизатор 78L05, TL431 — прецизионный регулятор напряжения (регулируемый стабилитрон), SMD-диоды 1N4148, кварц на 8,042 МГц. и «рассыпуха» — планарные конденсаторы и резисторы.
Прибор запитывается от батарейки на 9V (типоразмер 6F22). Впрочем, если такой нет под рукой, прибор можно запитать и от стабилизированного блока питания.
На печатной плате тестера установлена ZIF-панель. Рядом указаны цифры 1,2,3,1,1,1,1. Дополнительные клеммы верхнего ряда ZIF-панели (те, которые 1,1,1,1) дублируют клемму под номером 1. Это для того, чтобы было легче устанавливать детали с разнесёнными выводами. Кстати, стоит отметить, что нижний ряд клемм дублирует клеммы 2 и 3. Для 2 отведено 3 дополнительных клеммы, а для 3 уже 4. В этом можно убедиться, осмотрев разводку печатных проводников на другой стороне печатной платы.
Итак, каковы же возможности данного тестера?
Замер ёмкости и параметров электролитического конденсатора.
Для начала проверим электролитический конденсатор на 1000 мкФ * 16V. Подключаем один вывод электролита к выводу 1, а другой к выводу 3.
Можно подключит один из выводов к клемме 2. Прибор сам определит, к каким выводам подключен конденсатор. Далее жмём на красную кнопку.
Тестер можно использовать и для замера ёмкости у обычных конденсаторов с ёмкостью где-то от 20 пикофарад (20pF). Если подключить к ZIF-Панели выносные щупы, то можно проверять и детали, выполненные в корпусах для поверхностного (SMT) монтажа. Я, например, с помощью этого тестера подбирал SMD-конденсаторы и резисторы.
Обращаю внимание! Перед тестированием конденсаторов, особенно электролитических, их необходимо разрядить! Иначе можно повредить прибор высоким остаточным напряжением. Особенно это относится к электролитам, выпаянным с плат.
Таинственный параметр Vloss.
При проверке конденсаторов, кроме ёмкости и ESR, универсальный тестер показывает ещё такой параметр, как Vloss. Что же он означает? К сожалению, точного и конкретного обоснования этого термина я не нашёл. Но, судя по всему, он косвенно указывает на уровень утечки конденсатора. Как известно, реальный конденсатор имеет сопротивление диэлектрика между обкладками. Благодаря этому сопротивлению конденсатор медленно разряжается из-за, так называемого, тока утечки.
Так вот, при заряде конденсатора коротким импульсом тока напряжение на его обкладках достигает определённого уровня. Но, как только заряд конденсатора прекращается, напряжение на заряженном конденсаторе падает на очень небольшую величину. Разность между максимальным напряжением на конденсаторе и тем, что наблюдается после завершения заряда и выражают как Vloss. Чтобы было удобней, Vloss выражают в процентах.
Падение напряжения на обкладках конденсатора объясняют как внутренним рассеиванием заряда, так и сопротивлением между обкладками, которое имеется у всех конденсаторов, так как любой диэлектрик имеет, пусть и большое, но сопротивление.
Для керамических и электролитических конденсаторов высокий показатель Vloss в несколько процентов свидетельствует о плохом качестве конденсатора.
Проверка полевых J-FET и MOSFET транзисторов.
Теперь давайте протестируем широко известный MOSFET транзистор IRFZ44N. Вставляем его в панель так, чтобы его выводы были подключены к клеммам 1,2,3.
Никаких правил подключения соблюдать не надо, как уже говорилось, прибор сам определить цоколёвку детали и выдаст результат на дисплей.
На дисплее, кроме цоколёвки транзистора и его типа (n-канальный MOSFET), тестер указывает величину порогового напряжения открытия транзистора VGS(th) (Vt = 3,74V) и ёмкость затвора транзистора Ciis (C = 2,51nF). Если заглянуть в даташит на IRFZ44N и найти там значение VGS(th), то можно обнаружить, что оно находится в пределах 2 — 4 вольт.
Более подробно об основных параметрах MOSFET-транзисторов я уже писал здесь.
Также советую заглянуть на страничку, где рассказывается о разновидностях полевых транзисторов и их обозначении на схеме. Это поможет понять, что же вам показывает прибор.
Проверка биполярных транзисторов.
В качестве подопытного «кролика» возьмём наш КТ817Г. Как видим, у биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э) и напряжение смещения Б-Э (открытия транзистора) Uf. Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6
0,7 вольт. Для нашего КТ817Г оно составило 0,615 вольт (615mV).
Составные биполярные транзисторы тоже распознаёт. Вот только параметрам на дисплее я бы верить не стал. Ну, действительно. Не может составной транзистор иметь коэффициент усиления hFE = 37. Для КТ973А минимальный hFE должен быть не менее 750.
Как оказалось, структуру для КТ973А (PNP) и КТ972А (NPN) определяет верно. Но вот всё остальное замеряет некорректно.
Стоит учесть, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.
Проверка диодов универсальным тестером.
Образец для испытаний — диод 1N4007.
Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf. В техдокументации на диоды указывается как VF — Forward Voltage (иногда VFM). Замечу, что при разном прямом токе через диод величина этого параметра также меняется.
Для данного диода 1N4007: VF=677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.
Кроме этого тестер замеряет и ёмкость p-n перехода (C=8pF).
Результат проверки диода КД106А. Как видим, ёмкость перехода у него во много раз больше, чем у диода 1N4007. Аж 184 пикофарады!
Если вместо диода установить светодиод и включить проверку, то во время тестирования он будет задорно помигивать.
Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается и начинает излучать. Конкретно для этого красного светодиода оно составило Uf = 1,84V.
Как оказалось, универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания.
Проверка сдвоенного диода MBR20100CT.
Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как VF), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.
Проверка резисторов.
Данный тестер отлично справляется с замером сопротивления резисторов, в том числе переменных и подстроечных. Вот так прибор определяет подстроечный резистор типа 3296 на 1 кОм. На дисплее переменный или подстроечный резистор отображается в виде двух резисторов, что не удивительно.
Также можно проверить постоянные резисторы с сопротивлением вплоть до долей ома. Вот пример. Резистор сопротивлением 0,1 Ома (R10).
Замер индуктивности катушек и дросселей.
На практике не менее востребована функция замера индуктивности у катушек и дросселей. И если на крупногабаритных изделиях наносят маркировку с указанием параметров, то вот на малогабаритных и SMD-индуктивностях такой маркировки нет. Прибор поможет и в этом случае.
На дисплее результат измерения параметров дросселя на 330 мкГ (0,33 миллиГенри).
Кроме индуктивности дросселя (0,3 мГ) тестер определил его сопротивление постоянному току — 1 Ом (1,0Ω).
Маломощные симисторы данный тестер проверяет без проблем. Я, например, проверял им MCR22-8.
А вот более мощный тиристор BT151-800R в корпусе TO-220 прибор протестировать не смог и отобразил на дисплее надпись «? No, unknown or damaged part», что в вольном переводе означает «Отсутствует, неизвестная или повреждённая деталь».
Кроме всего прочего, универсальный тестер может замерять напряжение батареек и аккумуляторов.
Я был обрадован ещё и тем, что данным прибором можно проверить оптопары. Правда, проверить такие «составные» детали можно только в несколько этапов, поскольку они состоят минимум из двух изолированных между собой частей.
Покажу на примере. Вот внутреннее устройство оптопары TLP627.
Излучающий диод подключается к выводам 1 и 2. Подключим их к клеммам прибора и посмотрим, что он нам покажет.
Как видим, тестер определил, что к его клеммам подключили диод и отобразил напряжение, при котором он начинает излучать Uf = 1,15V. Далее подключаем к тестеру 3 и 4 выводы оптопары.
На этот раз тестер определил, что к нему подключили обычный диод. В этом нет ничего удивительного. Взгляните на внутреннюю структуру оптопары TLP627 и вы увидите, что к выводам эмиттера и коллектора фототранзистора подключен диод. Он шунтирует выводы транзистора и тестер «видит» только его.
Так мы проверили исправность оптопары TLP627. Похожим образом мне удалось проверить и маломощное твёрдотельное реле типа К293КП17Р.
Теперь расскажу о том, какие детали этим тестером НЕ проверить.
Мощные тиристоры. При проверке тиристора BT151-800R прибор показал на дисплее биполярный транзистор с нулевыми значениями hFE и Uf. Другой экземпляр тиристора определил как неисправный. Возможно, это действительно так и есть;
Стабилитроны. Определяет как диод. Основных параметров стабилитрона вы не получите, но можно удостовериться в целостности P-N перехода. Производителем заявлено корректное распознавание стабилитронов с напряжением стабилизации менее 4,5V. При ремонте всё-таки рекомендую не полагаться на показания прибора, а заменять стабилитрон новым, так как бывает, что стабилитроны исправны, но напряжение стабилизации «гуляет»;
Любые микросхемы, такие как интегральные стабилизаторы 78L05, 79L05 и им подобные. Думаю, пояснения излишни;
Динисторы. Собственно, это понятно, так как динистор открывается только при напряжении в несколько десятков вольт, например, 32V, как у распространённого DB3;
Ионисторы прибор также не распознаёт. Видимо из-за большого времени заряда;
Варисторы определяет как конденсаторы;
Однонаправленные супрессоры определяет как диоды.
Универсальный тестер не останется без дела у любого радиолюбителя, а радиомеханикам сэкономит кучу времени и денег.
Стоит понимать, что при проверке неисправных полупроводниковых элементов, прибор может определить тип элемента некорректно. Так, биполярный транзистор с одним пробитым p-n переходом, он может определить как диод. А вздувшийся электролитический конденсатор с огромной утечкой распознать как два встречно-включенных диода. Такое бывало. Думаю, не надо объяснять, что это свидетельствует о негодности радиодетали.
Но, стоит учесть тот факт, что также имеет место и некорректное определение значений из-за плохого контакта выводов детали в ZIF-панели. Поэтому в некоторых случаях следует повторно установить деталь в панель и провести проверку.