Калибратор для осциллографа своими руками

Калибратор осциллографа

Основной и наиболее широко применяемый прибор для исследования формы напряжения — электронный осциллограф. Для того чтобы не только визуально наблюдать электрические сигналы, но и измерять их параметры, осциллографы калибруют с помощью калибраторов. Калибратор амплитуды предназначен для градуировки или проверки точности градуировки вертикальной оси экрана осциллографа в единицах напряжения, а калибратор длительности соответственно для горизонтальной оси в единицах времени.

У многих радиолюбителей находятся в эксплуатации множество осциллографов, произведённых ещё в СССР, причём давным-давно не поверявшихся. Некоторые из них не имеют встроенного генератора эталонного сигнала. У других моделей он есть, но спустя десятилетия доверять ему можно лишь с большой осторожностью. Например, в имеющемся в моём распоряжении осциллографе С1-5 (СИ-1) есть встроенный калибратор амплитуды. Но, во-первых, он формирует синусоидальный сигнал частотой 50 Гц, а во-вторых, даже во времена его «детства» погрешность измерения амплитуды сигналов на участке шкалы 0,2. 1,2 В была ±10%, что по современным меркам слишком много.

Вниманию радиолюбителей, имеющих подобные приборы, предлагается калибратор для осциллографа с погрешностью измерений, определяемой лишь возможностями имеющихся в распоряжении радиолюбителей измерительных приборов, в моём случае — цифрового мультиметра M890G, основная погрешность измерения которого — погрешность меры. Устройство формирует сигнал прямоугольной формы (меандр) размахом 2 В, частотой 1 и 20 кГц. Это позволяет использовать калибратор, например, при настройке компенсации высокочастотного щупа осциллографа или для проверки динамических параметров усилителей мощности звуковой частоты.

Как было сказано выше, для налаживания (а затем и для периодической поверки) калибратора используется цифровой мультиметр M890G. Относительная погрешность измерения постоянного напряжения мультиметром M890G, согласно паспортным данным, равна ±0,5 % от измеряемого значения плюс/минус единица младшего разряда, а измерения частоты — ±1 % от измеряемого значения плюс/ минус единица младшего разряда с дискретностью 10 Гц. При измерении максимального напряжения на пределе 2 В абсолютная погрешность равна ±11 мВ при дискретности 1 мВ, измерения частоты 10ОО Гц — ±20 Гц, а частоты 20 кГц — ±210 Гц. К сожалению, индикатор мультиметра M890G, как и большинства других, позволяет отобразить всего лишь 3,5 разряда. Поэтому можно гарантировать только следующие технические характеристики калибратора: амплитуда выходного сигнала 1,999 В ±11 мВ, частота выходного сигнала 1 кГц ±20 Гци 19,99 кГц ±210 Гц.

Рис. 1. Схема калибратора

Схема калибратора показана на рис. 1. Источник прецизионного напряжения 1,999 В (калибратор амплитуды) собран на регулируемом стабилизаторе напряжения LM317T (DA1). У этой микросхемы между выходом и управляющим выводом с высокой точностью поддерживается стабильное образцовое напряжение 1,25 В. Поскольку вывод управления потребляет очень небольшой ток, выходное напряжение Uвых=1,25(1±R3/R4). Обычно сопротивление резистора R4 выбирают равным 240 Ом. Но в нашем случае для того, чтобы не учитывать ток через управляющий вывод и сделать его независимым от изменений на входе и в нагрузке, от выхода стабилизатора через резисторы R3, R4 должен отбираться ток, равный начальному току нагрузки (он должен быть больше 10 мА, поскольку таймер DA2 при напряжении питания 2 В потребляет ток не более 60 мкА). Если нагрузка недостаточна, напряжение на выходе увеличится [1].

Калибратор длительности собран на интегральном таймере ICM7555IN (DA2). Он выполнен по технологии КМОП, поэтому напряжение на его выходе (выводе 3) может изменяться от нуля до напряжения питания. Кроме того, эта микросхема работает и при напряжении питания 2 В. Таймер включён по типовой схеме генератора. Времязадающие цепи R1C1 и R2C1 подключены к выходу таймера. Этим обеспечивается высокая точность формирования меандра, поскольку зарядка и разрядка конденсатора С1 происходят через один и тот же резистор (либо R1, либо R2). Частоту генерируемых импульсов можно рассчитать по формуле f=0,7215/(R1•C1) [2]. Резистор R6 предохраняет таймер от замыкания выхода. Учитывая, что подавляющее большинство осциллографов имеют входное сопротивление не менее 1 МОм, это практически не сказывается на точности калибровки. Резистор R5 вместе с внутренним разрядным транзистором таймера образует дополнительный высокоомный выход прямоугольного сигнала. Конденсаторы С2 и С3 сглаживают всплески выходного напряжения стабилизатора DA1 в моменты переключения таймера DA2.

Читайте также:  Мангал олимп своими руками

Рис. 2. Чертёж платы колибратора

Калибратор собран на печатной плате из фольгированного с двух сторон стеклотекстолита толщиной 2 мм, чертёж которой приведён на рис. 2. При повторении конструкции особых требований к элементам не предъявляется. Главное, чтобы резистор R3 был многооборотным (в авторском варианте — СП5-2). Вместо импортного можно применить отечественный таймер КР1441ВИ1. Конденсатор С1 — СГМЭ-А с допуском ±1 %, но возможно применение и других конденсаторов с другими номиналами и с минимальным ТКЕ, тем более, что калиброванная частота выходных импульсов устанавливается подборкой резисторов R1 и R2. В авторском варианте каждый составлен из двух резисторов МЛТ-0,25 с допуском ±5 %, соединённых последовательно. Место на печатной плате для этого предусмотрено. Конденсатор С2 — любой керамический, СЗ — К53-1А или импортный, подходящий по размерам. Перемычка S1 применена от устройства СВП телевизора ЗУСЦТ.

Налаживают устройство так. Подают напряжение питания и подстроенным резистором R3 на выходе стабилизатора напряжения устанавливают напряжение 1,999 В, контролируя его мультиметром M890G на пределе 2 В. Эта операция очень кропотливая. Сопротивление подстроенного резистора следует медленно увеличивать от минимума до получения необходимого напряжения. Затем мультиметр переключают на измерение частоты и подбором резисторов R1 и R2 устанавливают выходную частоту 1 и 19,99 кГц. При налаживании удобно пользоваться многооборотным резистором СП5-1ВА сопротивлением 10 кОм, последовательно включённым с постоянным резистором 5,1 кОм, для частоты 20 кГц и многооборотным резистором СП3-36 сопротивлением 100 кОм (от СВП телевизора 3УСЦТ) с последовательно включённым постоянным резистором 180 кОм для частоты 1 кГц.

Работоспособность калибратора сохраняется при снижении напряжения батареи GB1 (G6F22) до 5 В. Учитывая, что потребляемый нагрузкой ток чуть больше 10 мА, а калибратор используется лишь периодически, её ёмкости хватает надолго.

1. Хоровиц П., Хилл У. Искусство схемотехники, т. 3. — М.: Мир, 1993.

2. Алексенко А. Г., Коломбет Е. А., Стародуб Г. И. Применение прецизионных аналоговых микросхем. — М.: Радио и связь, 1985.

Автор: С. Семихатский, г. Ейск Краснодарского края

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Источник

Калибратор для усилителя осциллографа

Оглавление

Устройство для калибровки усилителя вертикального отклонения и горизонтальной развертки осциллографа

Большинство осциллографов не содержат встроенного генератора эталонного сигнала. Конечно, некоторые старшие модели имеют калибровочный выход с полной амплитудой сигнала в 1 В, однако этот выход ограничен частотой 50 Гц и недостаточно точен для проведения настройки. Несколько большие возможности по настройке предоставляет специальный калибратор осциллографа, описанный в данной статье. Этот блок вырабатывает прямоугольный сигнал с амплитудным значением 1 В и частотой 1кГц, который можно использовать для настройки усилителя вертикального отклонения и горизонтальной развертки осциллографа.

Данный прибор можно также использовать для подстройки элементов компенсации осциллографичес-кого щупа или как источник сигнала для измерения переходных процессов в аудиоусилителях. Для обеспечения портативности в этом устройстве используется батарейное питание. Схема прибора малочувствительна к изменению питающего напряжения: выходная частота остается постоянной при изменении напряжения батареи от 7.7 до 9.8 В. Кроме того, низкий ток потребления — около 2 мА — позволяет значительно продлить срок службы батареи.

Описание схемы На рис. 1 показана принципиальная схема калибратора. Колебательная часть содержит две из шести секций КМОП-инвертора 4049 (DD2.1 и DD2.2), а также времязадающие компоненты С2, R7, R8, и R9. Элементы данной части схемы определяют выходную частоту. Точное значение частоты может быть рассчитано по формуле:

Рис. 1 Принципиальная схема калибратора

Допустим, что вход DD2.2 (вывод 5) вначале находится в низком состоянии, тогда выход DD2.2 (вывод 4) будет в высоком. Поскольку вход DD2.1 (вывод 3) также будет в высоком состоянии, на выходе DD2.1 (вывод 2) появится сигнал низкого уровня. Высокое напряжение с выхода DD2.2 будет заряжать конденсатор С2 через R7 и R8. Когда напряжение на конденсаторе С2 достигнет порогового значения, выход элемента DD2.2 и вход инвертора DD2.1 окажутся в низком состоянии. По этой причине выход DD2.1 переключится в состояние высокого уровня. Поскольку напряжение на конденсаторе С2 не может измениться мгновенно, напряжение на входе DD2.2 значительно повысится и достигнет примерно 150 % от напряжения питания. Эта петля положительной обратной связи переключает логические уровни с максимальной частотой, которая может быть получена на КМОП-элементе. Когда логический уровень инвертируется на DD2.1 и DD2.2, С2 перезаряжается в другом направлении и напряжение на выводе 5 начинает понижаться. При достижении порогового уровня на выводе 5, выход DD2.2 и вход DD2.1 переключатся в состояние высокого уровня, а выход DD2.1, соответственно, перейдет в состояние низкого уровня. Снова в этом случае напряжение на С2 не может измениться мгновенно, и напряжение на входе DD2.2 упадет примерно на 50 % ниже напряжения питания. Это, в свою очередь, инвертирует логические уровни на выходах указанных элементов. Резистор R9 ограничивает ток на входе DD2.2, когда напряжение на С2 превышает питающие напряжения, защищая таким образом входные диоды от разрушения. Этот резистор не допускает того, чтобы времязадающая RC цепочка разряжалась через внутренние защитные диоды. В противном случае имеется тенденция к затягиванию фронтов сигнала. В результате форма прямоугольного сигнала с 50 % заполнением сравнительно мало зависит от напряжения источника питания.

Читайте также:  Мужская сумка карман своими руками

Прямоугольный сигнал с выхода DD2.1 поступает на параллельно соединенные входы четырех оставшихся инверторов из корпуса 4049, выходы которых также соединены параллельно. В момент, когда напряжение на этих выходах становится низким, источник опорного напряжения 2.5В LM336Z (DD1) включается через резистор R1 и диод D1. В этот момент напряжение на выходе калибратора становится высоким.

Комбинированная нагрузочная способность четырех инверторов с DD2.3 по DD2.6 превышает 14 мА. В схеме используется только 2 мА от этого тока, обеспечивая крутые фронты выходного прямоугольного сигнала. Для того чтобы обеспечить амплитуду выходного калибровочного напряжения 1 В, используется ре-зисторная сборка R2-R6 с 2 % точностью. Резисторы в этой сборке имеют сопротивление 470 Ом и секционированы таким образом, чтобы обеспечить 40 % от 2,5 В амплитуды прямоугольного сигнала, что соответствует 1 В на контакте Л (выход калибратора). Контакт J2 используется как «Общий». Когда на выходе инверторов появляется импульс выходного напряжения, то напряжение на диоде D1 не превышает 0,5 В. При этом он закрыт, и выходной ток не протекает через R1 и DD1. В этот момент выходной калибровочный сигнал равен нулю. Двустороннее ограничение выходного сигнала обеспечивается, с одной стороны, динамическим сопротивлением порядка 0.2 Ом LM336Z в открытом состоянии и, с другой стороны, полностью выключенным током в момент, когда на выходе инверторов DD2.3-DD2.6 присутствует напряжение высокого уровня.

Точность амплитуды калибровочного сигнала поддерживается благодаря DD1 в диапазоне до 1 %. Несмотря на то что резистивная сборка имеет заявленную точность 2 %, отклонения сопротивлений между отдельными резисторами в ней гораздо меньше. Выходное сопротивление данной схемы составляет приблизительно 1000 Ом.

Выходной прямоугольный сигнал зависит в основном от тока через R2-R6, так что фильтрующий конденсатор большой емкости на 9-вольтовую батарею B1 не требуется. Конденсатор С1 нужен только для сглаживания пиковых бросков тока в момент переключения инвертора DD1.

Конструкция

Авторский прототип был собран на специальной макетной плате. Разводка компонентов в данном устройстве не является критичной,поэтому можно использовать любые удобные для вас варианты. Для тех, кто захочет построить это устройство на печатной плате, на рис.2 приведен чертеж разводки, а схема на рис. 3 показывает размещение компонентов.

Читайте также:  Подарочки для любимых своими руками

Рис. 2 Чертеж разводки

В соответствии с правильной последовательностью монтажа, вначале следует устанавливать наименее чувствительные компоненты. Припаяйте провода батарейной панельки, колодку под DD2, выключатель, затем потенциометр и выходной разъем. Потом установите остальные пассивные элементы: сначала резисторы, затем конденсаторы. Для достижения минимального дрейфа частоты выходного сигнала конденсатор С2 должен быть пленочным, R7-Me-талло-оксидный резистор с погрешностью 2 %, а в качестве R8 желательно использовать проволочный многооборотный потенциометр. В последнюю очередь необходимо устанавливать D1, DD1 и DD2.

Рис. 3 Размещение компонентов

Проверьте внимательно ориентацию полярных компонентов, и если вы не использовали печатную плату, то проверьте проводные соединения. В зависимости от чувствительности осциллографа, вам, возможно, потребуется другое значение амплитуды выходного сигнала. Если это так, то вы можете переделать выходной каскад схемы следующим образом: подключите два LM336Z последовательно и уменьшите сопротивление резистора R1 для поддержания тока около 1 мА в делителе и LM336Z. Это обеспечит в два раза большее напряжение на выходе.

Настройка и калибровка

Выходное напряжение калибратора можно проверить любым хорошим цифровым мульти-метром. Временно замкните точку соединения R1 и D1 на землю. Это установит выход устройства в постоянное напряжение 1 В. Проверьте и убедитесь, что это так.

Для проверки выходной частоты вы можете использовать цифровой частотомер. Однако есть и другой точный метод, который можно использовать при наличии тестового компакт-диска. Включите тестовый диск на воспроизведение синусоидальной частоты 1кГц и подключите его к одному каналу стереоусилите-ля. К другому каналу подключите свой калибратор для осциллографа. Вращением потенциометра R8 подстройте выходную частоту калибратора так, чтобы получить нулевые биения звуковой частоты. Этот процесс звуковой балансировки подобен тому, как обычно настраивают пианино или гитару.

Использование калибратора

Усилитель вертикального отклонения осциллографа можно проверить, подключив калибратор и сравнив размах прямоугольного сигнала на экране осциллографа с разметкой, нанесенной на электронно-лучевой трубке. Генератор развертки проверяют, установив ручку развертки в положение 1 мс и сравнив прямоугольные фронты сигнала с вертикальной разметкой трубки. Кроме того, с помощью данного калибратора можно проверить входной пробник-делитель осциллографа (х10, х100). Поскольку фронты прямоугольного сигнала, формируемого калибратором, достаточно крутые, любые искажения его формы становятся очень заметными. Если выносной пробник имеет в своем составе подстроечные элементы, то их регулировкой можно добиться восстановления исходной прямоугольной формы калибровочного сигнала, проходящего через делитель.

Полупроводниковые компоненты: DD1 — LM336Z прецизионный источник опорного напряжения (Jameco 23771 или аналогичный) DD2 — 4049 шесть КМОП-инверторов D1 — 1 N4148 кремниевый диод Пассивные компоненты:
Резисторы (все постоянные резисторы 0,25 Вт, 5%, кроме указанных особо)
R1 — 2,2 кОм
R7 — 39 кОм
R8 — 10 кОм, подстроечный (см. текст)
R9 — 1 МОм
R2-R6 — 470Омх5, 2 % резисторная сборка
Дополнительные детали и материалы:
С1 — 0,1 мкФ керамический дисковый конденсатор
С2 — 0,01 мкФ пленочный прецизионный конденсатор
S1 — миниатюрный выключатель
Л, и2-наконечники (красный и черный)
В1 — 9 В батарейка

Charles Hansen Перевод и обработка Владимир Волков

Рекомендуем к данному материалу .

Мнения читателей

Очень интересное, а главное практичное решение. Правда в тексте есть некоторые моменты, не отредактированные после OCR-обозначение выхода J1 стало Л вывод 15 DD2 стал 16. В схеме применен источник опорного напряжения LM336Z2.5. Есть также источник опорного напряжения LM336Z5.0. Поэтому, для повышения выходного напряжения, вместо двух последовательных LM336Z2.5, я думаю можно применить одну LM336Z5.0. Сегодня найти резисторы 0,5 или 1% проще, чем резисторную сборку. Поэтому можно спокойно заменить соответствующие цепи резисторами 1,4к и 910R соответствующей точности.Плохо, что автор не указал конкретно микросхему на которой собирался образец. 74НС4049, 74АС4049, CD4049, MBH4049, HEV, HEC и другие имеют свои особенности. Конечно не помешала бы и ссылка на первоисточник, а не только на Charles Hansen.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник

Оцените статью
Своими руками