Как усилить сигнал рации: это помогает!
Многие пользователи таких устройств, как рация, задаются вопросом, как усилить сигнал. В этой статье мы расскажем, как можно увеличить дальность рации. Данные устройства пользуются популярностью среди людей, у которых постоянно существует потребность быть всегда на связи. Для обеспечения постоянной работы оборудования важно, чтобы рация обладала отличной мощностью. Данная возможность позволяет без ограничений разговаривать.
Большинство моделей рассчитаны на хорошие показатели связи в пределах одного километра. В таких ситуациях возникает потребность в увеличении дальности передачи и приема сигнала. Достичь данного эффекта можно несколькими способами.
Для начала рекомендуется заменить на четырехволновой штырь спиральную антенну. Данный элемент можно приобрести на любом рынке. Если есть необходимость усилить сигнал в большей степени, то можно прибегнуть к использованию кусочка коаксиального кабеля. Далее необходимо заняться настройкой частот Вашей радиостанции таким образом, чтобы устройство посылало на максимальное расстояние сигнал.
Не стоит забывать про мощность входного тракта. Выбирать следует серединные частоты, поскольку на краях характеристики чувствительности и мощности рации ухудшаются. Необходимо также проверить заряжены ли полностью аккумуляторы радиостанций. Это необходимо делать, поскольку питание влияет существенным образом на входную мощность. Также для улучшению приема сигнала следует использовать все доступные возвышенности.
На локальных участках увеличение радиуса приёма
Специальный усилитель сигнала для рации – это устройство, которое используют для увеличения на конкретном участке дальности приема у раций. Он работает исключительно в момент работы режима передами. На качество приема не оказывает никакого влияния его использование.
Данные советы помогут усилить сигнал рации. Конечно, это не исчерпывающий список советов, но даже среди этой информации Вы сможете подчеркнуть полезные сведения для себя.
Источник
Антенна для рации своими руками
Избегайте своими руками делать антенны на рации для автомобилей по той простой причине, потом оборудование сложно настроить. Штатные устройства у основания содержат узел, напоминающий гайку, позволяющий водителю настроить прибор на используемую волну. Для ручных моделей дело обстоит иначе. Антенна для рации своими руками быть сделана может, однако для крупных предприятий, покупающих частоту, возникнут проблемы. Государственный комитет следит за проданным товаром, чтобы потребители избегали взаимных помех. Железные дороги не пересекаются с судоремонтными заводами. Иногда требуется промышленникам связь, каждый начнет оборудование улучшать, найдем ситуацию: абоненты услышат друг друга. Работая на разных предприятиях. Спросите ГКРЧ: дадут рекомендации, быть может, достаточно будет продемонстрировать специалистам в действии доработку для оценки влияния на соседние домены связи.
Связь и антенны раций
Неоднократно говорили: в обыденности чаще используются линейная, круговая поляризация, последняя – преимущественно на спутниках. Не исключение рации. Горизонтальную поляризацию забрало телевидение, оставив вертикальную радиовещанию… рациям. Логично. Когда держим рацию, антенна расположена вертикально. Виден сигнал, отраженный местностью, повернутый на фиксированный угол. Благодаря эффекту, туповатый военный демонстрирует “нарушение” законов физики… Идеальный прием ведется вертикально стоящей антенной. Не верите – делайте наоборот!
Прочитавшие обзоры про самодельные антенны, будут поражены, но не удивлены. Опять несимметричные четвертьволновые вибраторы, изготовленные из куска стандартного коаксиального кабеля. Поляризация, частоты, почему нечто должно меняться. Однажды сказали: телевизионную антенну из кабеля можно ставить вертикально, ловить радио, найдись таковое на нужной волне…
Родная антенна рации. Внутри набалдашника медная спираль, кончик которой крепится в районе вершины. У некоторых раций просто можно добраться до завитков, у прочих – проблема нерешаемая. Почему спираль?
Согласно курсу электродинамики распространения радиоволн, антенна излучает в направлении оси, волна будет поляризована кругом, согласно направлению завивки. Только если длина витка близка значением длине волны. Рассматриваемый контекст предполагает цифру полметра и выше, о близости забудьте.
Представление о диаграмме направленности дает программа MMANA. Доброжелатели любезно забили туда антенну рации (145 МГц), избегая менять параметры, посмотрели поле (открыв приложение):
- В вертикальной поляризации вышел по азимуту ровный круг. Понятно, тело человека диаграмму исказит! Действительно, спиралька излучает вертикальную поляризацию почти ровно. Уровень составляет – 3 dBi.
- Горизонтальной поляризации формой напоминает восьмерку, уровень намного ниже. Если держать рацию со спиральной антенной по горизонтали, прием ухудшится, нуля не достигнет.
По углу места с горизонтальной поляризацией образуется полукруг, с вертикальной – вдоль оси провал. Полезный сигнал вверх не излучается. Пусть человек с рацией заберется на дерево. И оба держат приборы вертикально, прием будет обусловлен только горизонтальной составляющей, а также отраженным сигналом. Вот какие антенны используют рации… Неудивительно, что любителей грызет желание изменить конструкцию. Посему используются спирали.
На деле — и на файле MMA — антенна состоит из спирали, немалую роль играет колпачок. Задумка ясна. В реальных условиях связь должна вестись по всем направлениям, четвертьволновый вибратор неспособен обеспечить заданные требования. Почему четверть. Полуволновой вибратор более длинный. Габариты имеют значение. Спирали начали вить не от полноценной жизни. Просто длинная антенна для рации слишком великая роскошь. Карман проткнет, рукой замучаешься держать, ветреная погода вырвет. Приходится идти на жертвы. Напомним, по вертикальной поляризации диаграмма направленности демонстрирует подобие тора, типично. Горизонтальная добавляет нечто вроде гантели (грубое приближение), формирующей недостающие углы, участки пространства. На прием и передачу диаграмма направленности одинакова.
Будем конструировать рации, убирая необычные свойства приема по всем направлениям. Энергия устремится в направлении тора. Дальность вещания возрастет. Если переоборудовать обе рации, получим дополнительный выигрыш ценой утраты окончательно приема (передачи) сверху-снизу. Напоминаем, диаграммы направленности на прием и передачу одинаковые (идентичны).
Увеличим дальность радиостанции, переделав антенну
Вывод очевиден: хотим увеличить дальность — видели диаграмму направленности заводской антенны — нужно мощность направить на вертикальную поляризацию, в тор. Как сделать, ясно, однако на горизонте маячит один вопрос – волновое сопротивление антенны рации. Знаете значение? Говорили, как померить! Если длина фидерной линии питания кратна половине длины волны, сопротивление антенны передается на выход без изменения. Эффект используем для измерения.
Используются различные приборы (ВЧ-генератор). Задумавшимся взять такой, скажем: гетеродин телевизора способен выдать похожую частоту, другое дело настроить. Поговорим отдельно. Понадобится высокочастотный вольтметр, обычный для целей измерения непригоден. Прибор измеряется напряжением ВЧ генератора в подвешенном состоянии, шкалу калибруют, чтобы показывала 100%. Собирают схему последовательно соединенных:
Подключают генератор к цепи, измеряют напряжение резистора. Крутят регулировку, пока начнет стрелка показывать 50%. Сопротивление переменного резистора становится равным волновому сопротивлению антенны. Необходимо брать неиндуктивное сопротивление (у которого отсутствует собственная индуктивность). Самодельная антенна рации по возможности должна повторять электрические параметры заводской. Волновое сопротивление берется близким исходному. Процесс измерения читателям понятен.
Выбор конструктора невелик: два глобальных семейства. Кабели волновым сопротивлением 50, 75 Ом. Первый применяются связью, второй – телевидением. Антенна портативной рации делается из того, который ближе номиналом измеренному значению. Четвертьволновый вибратор (лишенный спирали) обладает сопротивлением 35 Ом. Параметры покупной антенной предугадать сложно. Практикам проще изготовить две антенны для рации, используя кабель разного сорта. Затем каждую испытать на местности, оценивая характер изменений.
Изготовление антенны рации
Кратко напомним процесс изготовления антенны для рации. Рассматривали цифровое телевидение, WiFi, 3G. Аудитория портала ВашТехник знает, как сделать антенну для рации. Копируйте смело методики. Прежде нужно знать частоту. Точнее – лучше. Рации имеют несколько каналов, частоты прописаны паспортом. Выберите канал, задавая размеры антенны.
Пусть частота равна 435 МГц. Находим длину волны по школьной формуле, деля скорость света на указанную величину: 299792458 / 435000000 = 689 мм. Чтобы изготовить четвертьволновый вибратор, необходимо число поделить еще на 4, получим – 172,25. Длина антенны для рации составит 17 см. Постарайтесь точнее выдержать миллиметры. Экран можно не счищать. Будет приемной поверхностью, увеличится полоса. Руки чешутся – счистите, как кожуру, оплетку, диэлектрик вокруг главной жилы оставьте.
Старая антенна выпаивается, под новую готов хомут. Осталось заделать на место, наслаждайтесь связью. Антенна для рации своими руками сделана. Кстати, если нет желания снимать экран, запаяйте вместе с жилой в одну связку при монтаже на микросхему. Расширение диапазона считаете лишним – экран лучше снимите. Первый и второй варианты наделены достоинствами, цельный кабель прочнее. Лучше оставить как есть. Антенна для рации прослужит дольше. Позаботьтесь приклеить симпатичный колпачок-наконечник, чтобы медь перестала окисляться. Прощаемся ровно до следующего раза.
Копируйте заводские конструкции. Рации предприятий ломаются. Адаптеры остаются, приборы выбрасывают. Неоценимый шанс радиолюбителя проявить себя. Антенна покрыта резиной, легко обдираемой. Либо используйте аксессуар сломанного изделия. Процесс копирования напрямую не запрещен, исключая изделия, защищенные патентами. Дело касается промышленного выпуска продукции с целью сбыта, получения фиксированной прибыли за счет выполнения указанных действий.
Источник
Увеличение дальности радиосвязи
Не секрет, что всем, кому необходимы рации с большим радиусом действия, сталкиваются со множеством вопросов. Сегодня мы рассмотрим современные варианты решения задачи увеличения радиуса действия раций, которые будут интересны как радиолюбителям, так и профессионалам.
Дальность связи – величина переменная. О множестве факторов, влияющих на дальность рации, мы подробно рассказывали в статье «О дальности радиосвязи» .
Основные способы увеличения дальности раций:
Установка более эффективных антенн.
«Главный усилитель — антенна». Эта крылатая фраза известна всем, кто ищет способы увеличения дальности раций. Антенна влияет как на приём, так и на передачу сигнала. Чем эффективнее антенна, тем дальше радиус действия раций. И портативные, и автомобильные и базовые антенны нуждаются в тщательном подборе для работы с вашей аппаратурой. Так например, простая замена штатной антенны портативной рации на более эффективную даст прирост в дальности порядка 5-10%, что актуально в зоне неуверенного приёма. Однако, в случае масштабных объектов данная мера может не принести ожидаемого эффекта.
Подъём антенны — улучшение связи в прямой видимости.
Известно, что дальность связи напрямую зависит от условий прямой видимости. Если речь идёт об автомобильных рациях, антенны устанавливаются на самую высокую точку кузова. Если же мы говорим о базовых рациях, то для большей дальности используются мачты, учитывается высота крыши и близлежащих зданий, сооружений и рельефа местности. Для достижения максимальной дальности важно, чтобы антенна находилась на самой высокой и открытой точке.
Изменение частотного диапазона.
Если при работе в каком-либо диапазоне частот дальность связи недостаточна, можно рассмотреть смену этого диапазона на другой, длина волны которого оптимальна для использования в индивидуальных условиях. Обязательно необходимо учитывать рельеф, конструктив сооружений, местность использования. Заботясь о том, как увеличить дальность связи рации, не стоит забывать и о юридических особенностях использования радиочастот, так как для свободного общения гражданам выделены три диапазона: Си-Би, LPD и PMR. Сравнение частотных диапазонов на практике и их влияние на дальность описано в статье «Тест портативных раций в лесу».
Увеличение мощности и обновление оборудования.
Одним из факторов, влияющих на дальность, является выходная мощность передатчика. Чем она выше, тем больше дальность передачи. Однако, чтобы дальность увеличить в два раза, мощность необходимо увеличить в четыре раза и так далее в геометрической прогрессии. Для повышения дальности передачи можно выбрать рации с повышенной мощностью, либо использовать усилители. Ещё одним существенным фактором является чувствительность приёмника рации. Современные модели обладают отличной схемотехникой, и обновление раций на более современные с улучшенными показателями чувствительности приёмника также может обеспечить прирост в дальности работы раций.
Использование ретранслятора (репитера).
Рации, работающие в симплексном режиме в «прямом» канале, т.е. по схеме «абонент-абонент», существенно ограничены в дальности. Железобетонные перекрытия торговых комплексов и зданий, городская застройка, лес и холмы могут оказаться непреодолимой преградой для связи абонентов. Замена антенн, манипуляции с выходной мощностью и смена частотных диапазонов могут обеспечить прирост в зоне действия каждой носимой или мобильной рации, но не приведут к желаемым результатам и не превратит ваши средства связи в рации большой дальности при работе в прямом канале.
Многие задачи по увеличению зоны покрытия локальных объектов решаются с помощью приобретения дополнительного устройства – ретранслятора (репитера). Базовые возможности репитеров по увеличению дальности раций заключаются в использовании двух частот приёма и передачи. Портативная рация в этом случае работает в полудуплексном режиме с разносом частот приема и передачи. Она передаёт сигнал на одной частоте, её принимает чувствительная базовая антенна ретранслятора и одновременно передаёт усиленный сигнал с большей мощностью на другой частоте, которую принимают все остальные радиостанции. За счёт этого общий радиус действия раций может увеличиться в несколько раз.
Классическая схема работы репитера имеет много областей применения: радиолюбительские задачи, охота и рыбалка с использованием, например, автомобиля-ретранслятора (подробнее – в нашей статье «Рации для охоты. Мифы и реальность» ), для служебных задач – обеспечение связью локальных объектов, торговые комплексы, гостиницы и рестораны, открытые объекты со сложным рельефом и многие другие случаи, где дальность раций в прямом канале недостаточна. Если для решения задачи требуется рация с большим радиусом действия — вам необходим репитер. Установка репитера в центре зоны работы даст увеличение радиуса действия раций минимум в два раза!
Для построения репитерной системы, с помощью которой можно существенно усилить радиус действия рации 430 МГц, служит ретранслятор BF-3000 , запрограммированный на работу с безлицензионными каналами LPD и PMR. С ним могут быть использованы самые разные антенны – автомобильные или стационарные. Комплект из одного такого репитера и антенны существенно увеличит зону работы раций.
Соединение раций по интернету или локальной сети.
Увеличение дальности радиостанций по классической репитерной схеме во многих случаях недостаточно. Нередко случается так, что на существующем этапе учтены все особенности и подобрано максимально эффективное оборудование, однако остаётся необходимость в расширении функциональных возможностей, в значительном увеличении радиуса покрытия, удалении «слепых зон » , где радиосвязи нет вовсе, а также в соединении между собой удалённых объектов, расположенных на значительном расстоянии друг от друга в тех случаях, когда классическая радиосвязь не способна покрыть столь большие расстояния.
Для организации подобных задач в помощь радиосвязи приходят сетевые технологии . На их основе сегодня работают практически все крупные системы радиосвязи, обеспечивающие не только увеличение дальности рации, но и огромный прирост функциональных и прикладных возможностей.
Для наглядной демонстрации базовых принципов работы подобных систем рассмотрим пример.
Необходимо обеспечить радиосвязью с полным покрытием мобильные группы, патрулирующие участок шоссе длиной 300 км. С учётом рельефа местности и прочих особенностей, влияющих на распространение радиоволн выяснено, что один ретранслятор или базовая станция не способна покрыть столь протяжённую территорию. Для решения задачи необходима установка нескольких репитеров с возможностью коммуникации их между собой. Репитеры соединяются в IP-сеть, каждому репитеру соответствует своя частота приёма и передачи, каждому выделяется IP адрес. Комплекс АФУ, ретранслятор, сетевое устройство, источник питания и другое оборудование, устанавливаемое в каждой точке, принято называть «сайт». У каждого сайта есть своя индивидуальная зона покрытия. Исходя из особенностей места установки каждого сайта и радиуса его действия, рассчитывается общее необходимое количество сайтов по всей длине трассы.
Портативные или мобильные рации членов экипажа запрограммированы таким образом, что в режиме реального времени непрерывно осуществляют сканирование по всем частотам всех установленных репитеров, анализируют уровень сигнала и автоматически переключаются на работу с тем репитером, уровень сигнала которого наиболее сильный в каждом конкретном месте. Данную функцию в радиосвязи принято называть «роуминг», она позволяет осуществлять переключение между сайтами в автоматическом режиме без участия абонента, которому остаётся лишь нажать тангенту PTT в любой необходимый момент времени и осуществлять привычный радиообмен. Данный принцип работы хорошо знаком по тематике мобильной связи – именно подобные фундаментальные возможности обеспечивают нас удобной коммуникацией, где бы мы не находились.
Реализовать подобные сетевые решения позволяют уникальные российские устройства, не имеющие полнофункциональных аналогов в мире. Они позволяют превращать обычные радиостанции в портативные рации дальнего радиуса действия, связывать между собой как соседние этажи подземной парковки с толстыми железобетонными перекрытиями, так и отдалённые города и страны, позволяя с помощью раций практически любых стандартов – как самых простых аналоговых, так и цифровых, даже независимо от частотных диапазонов, осуществлять коммуникацию абонентов простым нажатием клавиши передачи.
Эти устройства носят название «шлюзы», технология, на основе которой они работают – RoIP – Radio over Internet Protocol. Их разработчиком является российский проект «Центр Новых Технологий». Сами шлюзы, представляя собой небольшую коробочку с индикаторами и разъёмами, имеет неограниченно гибкие возможности интеграции и настройки алгоритмов работы, которые открывают новые возможности пользователям любого уровня. Для подключения рации к шлюзу достаточно изготовить кабель, соединяющий аксессуарный разъём радиостанции с разъёмом на шлюзе.
К шлюзам могут быть подключены практически любые радиостанции и выполнять роль приёмника, передатчика или полноценного ретранслятора. Если рассматривать более совершенные модели, такие как ФР-106, то возможна их работа в телефонных системах в качестве компонента, существенно расширяющего возможности АТС. Модель нового поколения – контроллер ЦРК-1000 способен полнофункционально интегрироваться в цифровые системы стандарта APCO-P25, широко использующиеся в государственных службах обеспечения безопасности и правопорядка.
Рассмотрим ещё один пример увеличения дальности и реализации дополнительных возможностей с помощью сетевых технологий и шлюзов.
В большом торговом комплексе установлены ретрансляторы и развёрнута система цифровой связи. В связи со сменой организации, предоставляющей услуги клининга, был заключён контракт с новой компанией, которая уже снабжена парком аналоговых радиостанций, замена которых не планируется.
Перед руководством торгового комплекса и новой службой клининга встаёт задача обеспечения возможности коммуникаций между развёрнутой цифровой системой связи и аналоговыми рациями новых сотрудников клининга.
В действующую сеть интегрируется необходимое количество шлюзов, подключенных к аналоговым радиостанциям, которые размещаются совместно с установленными цифровыми репитерами. Аналоговые рации со шлюзами будут выполнять роль как приёмника, так и передатчика для обеспечения взаимодействия двух стандартов – аналога и цифры. Сигнал, принятый с аналоговых портативных раций сотрудников клининга на аналоговые рации, подключенные к шлюзам, будет передаваться по сети на цифровые ретрансляторы и транслироваться на цифровые рации других сотрудников торгового комплекса. Точно также будет происходить обратная трансляция цифрового стандарта в аналоговый, обеспечивая двустороннюю связь сотрудников клининга с другими действующими службами торгового комплекса. В итоге с помощью шлюзов мы решили задачу интеграции аналоговой связи в действующую цифровую систему.
Немаловажным аспектом работы шлюзов является диспетчеризация. Диспетчер находится на значительном удалении от групп абонентов, с которыми необходимо поддерживать связь. Например, место расположения дежурной части территориально удалено от групп быстрого реагирования, базирующихся в другой части города. В этом случае диспетчеру устанавливается специальный пульт управления и подключается к сети. В месте базирования мобильных групп устанавливается базовая станция с подключенным шлюзом ФР, который соединён по IP протоколу с пультом диспетчера. Таким образом диспетчер получает возможность не только осуществлять переговоры с мобильными группами через базовую станцию, расположенную в другой части города, но и удалённо переключать каналы рации, производить запись и сохранение всех происходящих в сети переговоров.
Как мы можем убедиться, вариантов применения сетевых решений на базе RoIP и шлюзов ФР неограниченное количество. Они способны решать большое количество задач, не зависят от частотных диапазонов, видов модуляции и стандартов связи, открывают дополнительные возможности диспетчеризации и удалённого управления.
В нескольких городах России на базе шлюзов ФР-101 построены системы радиолюбительской связи, которые работают вкупе с классическими ретрансляторами. Благодаря им, УКВ-радиолюбители могут общаться друг с другом на привычные портативные аналоговые рации с радиолюбителями из других городов не выходя из квартиры. Как известно, радиолюбители очень требовательны к качеству аппаратуры и передаваемому сигналу. Шлюзы ФР полностью удовлетворят самые взыскательные требования и обеспечат безупречную работу системы.
Построение цифровых и транкинговых систем связи.
Когда речь заходит о задачах глобального масштаба, требуются ещё более серьёзные решения. Обеспечение безопасности государства, чрезвычайные ситуации, сложные транспортные сообщения, глобальная нефте- и газодобывающая промышленность – требуют особого подхода. Глобальное позиционирование, повышенная криптостойкость переговоров и передаваемых данных, расширенный функционал и приоритетность вызовов, возможность передачи текстовых сообщений, координат и служебных команд по радиоканалу с учётом распределения ограниченного частотного ресурса между большим количеством абонентов и групп – эти и многие другие возможности обеспечивают транкинговые системы связи . Дорогостоящие многомиллионные решения используются там, где экономия недопустима. Несмотря на сложные технические решения, транкинговые системы связи опираются на описанные ранее базовые принципы работы как сетевых коммуникаций, так и радиостанций.
Рассмотренные технологии позволяют индивидуально подобрать оборудование и решить вопрос о том, как увеличить дальность рации. Самыми доступными и эффективными являются использование ретрансляторов и сетевых устройств – IP шлюзов, позволяющий увеличить дальность рации как в прямой видимости, так и между неограниченно удалёнными друг от друга объектами. Современные технологии открывают новые возможности и обеспечивают доступные и эффективные решения для того, чтобы вы всегда были на связи со своими коллегами.
Источник